Mostrar el registro sencillo del ítem

dc.contributor.author
Galeano, Esteban Emanuel  
dc.contributor.author
Cappa, Eduardo Pablo  
dc.contributor.author
Bousquet, Jean  
dc.contributor.author
Thomas, Barb R.  
dc.date.available
2024-01-25T15:09:35Z  
dc.date.issued
2023-11  
dc.identifier.citation
Galeano, Esteban Emanuel; Cappa, Eduardo Pablo; Bousquet, Jean; Thomas, Barb R.; Optimizing a Regional White Spruce Tree Improvement Program: SNP Genotyping for Enhanced Breeding Values, Genetic Diversity Assessment, and Estimation of Pollen Contamination; Multidisciplinary Digital Publishing Institute; Forests; 14; 11; 11-2023; 1-18  
dc.identifier.issn
1999-4907  
dc.identifier.uri
http://hdl.handle.net/11336/224865  
dc.description.abstract
The utilization of genotyping has gained significant popularity in tree improvement programs, aiding in enhancing the precision of breeding values, removing pedigree errors, the assessment of genetic diversity, and evaluating pollen contamination. Our study explores the impact of utilizing 5308 SNP markers to genotype seed orchard parents (166), progeny in progeny trials (667), and seedlot orchard seedlings (780), to simultaneously enhance variance components, breeding values, genetic diversity estimates, and pollen flow in the Region I white spruce (Picea glauca) breeding program in central Alberta (Canada). We compared different individual tree mixed models, including pedigree-based (ABLUP), genomic-based (GBLUP), and single-step pedigree-genomic-based (ssGBLUP) models, to estimate variance components and predict breeding values for the height and diameter at breast height traits. The highest heritability estimates were achieved using the ssGBLUP approach, resulting in improved breeding value accuracy compared to the ABLUP and GBLUP models for the studied growth traits. In the six orchard seedlots tested, the genetic diversity of the seedlings remained stable, characterized by an average of approximately 2.00 alleles per SNP, a Shannon Index of approximately 0.44, and an expected and observed heterozygosity of approximately 0.29. The pedigree reconstruction of seed orchard seedlings successfully identified consistent parental contributions and equal genotype contributions in different years. Pollen contamination levels varied between 11% and 70% using SNP markers and 8% to 81% using pollen traps, with traps both over- and under-estimating contamination. Overall, integrating genomic information from parents and offspring empowers forest geneticists and breeders in the Region I white spruce breeding program to correct errors, conduct backward and forward selections with greater precision, gain a deeper understanding of the orchard’s genetic structure, select superior seedlots, and accurately estimate the genetic worth of each orchard lot, which can ultimately result in increased and more precise estimates of genetic gain in the studied growth traits.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Multidisciplinary Digital Publishing Institute  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
EFFECTIVE POPULATION SIZE  
dc.subject
MOLECULAR MARKERS  
dc.subject
PICEA GLAUCA  
dc.subject
POLLEN FLOW  
dc.subject
TREE BREEDING  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Optimizing a Regional White Spruce Tree Improvement Program: SNP Genotyping for Enhanced Breeding Values, Genetic Diversity Assessment, and Estimation of Pollen Contamination  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-25T10:49:16Z  
dc.journal.volume
14  
dc.journal.number
11  
dc.journal.pagination
1-18  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Galeano, Esteban Emanuel. University of Alberta; Canadá  
dc.description.fil
Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina  
dc.description.fil
Fil: Bousquet, Jean. Laval University; Canadá  
dc.description.fil
Fil: Thomas, Barb R.. University of Alberta; Canadá  
dc.journal.title
Forests  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/f14112212