Mostrar el registro sencillo del ítem

dc.contributor.author
Orlando, Victoria Maria  
dc.contributor.author
Baquela, Enrique Gabriel  
dc.contributor.author
Bhouri, Neila  
dc.contributor.author
Lotito, Pablo Andres  
dc.date.available
2024-01-25T15:09:08Z  
dc.date.issued
2023-05  
dc.identifier.citation
Orlando, Victoria Maria; Baquela, Enrique Gabriel; Bhouri, Neila; Lotito, Pablo Andres; Public transport demand estimation by frequency adjustments; Elsevier; Transportation Research Interdisciplinary Perspectives; 19; 5-2023; 1-9  
dc.identifier.issn
2590-1982  
dc.identifier.uri
http://hdl.handle.net/11336/224862  
dc.description.abstract
This article addresses the problem of estimating the demand for public transport from two approaches. First, we propose a bilevel optimization problem that allows estimating the demand using historical data and the observed bus frequencies. This model has been applied to small theoretical networks and the transit network of Tandil (a medium-sized city in Buenos Aires, Argentina), showing good results. However, from a practical point of view, the computation time of the algorithm used to solve the bilevel problem is long, reducing its applicability by traffic authorities. To solve this, we propose to use an artificial neural network module that allows to quickly detect if the change in demand is significant enough (for example, beyond a predefined threshold). If it is substantial, the operator can decide to run the algorithm to estimate the demand and take action to adapt the system to the new reality, for example, adapting vehicle frequencies or incorporating more vehicles into the system so that the current demand can be served. The machine learning approach allows it to be used as a fast change detection tool, avoiding running the expensive algorithm for false positives.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
BI-LEVEL OPTIMIZATION  
dc.subject
INVERSE PROBLEM  
dc.subject
NEURAL NETWORKS  
dc.subject
PUBLIC TRANSPORT DEMAND  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Public transport demand estimation by frequency adjustments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-25T14:08:15Z  
dc.journal.volume
19  
dc.journal.pagination
1-9  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Orlando, Victoria Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.description.fil
Fil: Baquela, Enrique Gabriel. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Bhouri, Neila. No especifíca;  
dc.description.fil
Fil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.journal.title
Transportation Research Interdisciplinary Perspectives  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.trip.2023.100832