Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Color optimization of a core–shell nanoparticles layer using machine learning techniques

Urquia, Gonzalo Martin; Inchaussandague, Marina ElizabethIcon ; Skigin, Diana CarinaIcon
Fecha de publicación: 02/2023
Editorial: Elsevier
Revista: Results in Optics
ISSN: 2666-9501
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Óptica

Resumen

Neural networks were recently introduced in the field of nanophotonics as an alternative and powerful way to obtain the non-linear mapping between the geometry and composition of arbitrary nanophotonic structures on one hand, and their associated properties and functions on the other. Taking into account the recent advances in the application of the machine learning concept to the design of nanophotonic devices, we employ this tool for the optimization of photonic materials with specific color properties. We train a deep neural network (DNN) to solve the inverse problem, i.e., to obtain the geometrical parameters of the structure that best produce a desired reflected color. The analyzed system is a single layer of core–shell spheres composed of melanin and silica embedded in air, arranged in a hexagonal matrix. The network is trained using a dataset of the three CIE 1976 (L*a*b*) color coordinates obtained from the simulated reflectance spectra of a large set of structures. The direct problem is solved using the Korringa–Kohn–Rostoker method (KKR), widely applied to calculate the optical properties of sphere composites. The color optimization approach used in this work opens up new alternatives for the design of artificial photonic structures with tunable color effects.
Palabras clave: MACHINE LEARNING , OPTIMIZATION , STRUCTURAL COLOR
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.331Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/224786
URL: https://www.sciencedirect.com/science/article/pii/S2666950122001237
DOI: http://dx.doi.org/10.1016/j.rio.2022.100334
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Urquia, Gonzalo Martin; Inchaussandague, Marina Elizabeth; Skigin, Diana Carina; Color optimization of a core–shell nanoparticles layer using machine learning techniques; Elsevier; Results in Optics; 10; 2-2023; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES