Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Towards detecting the level of trust in the skills of a virtual assistant from the user's speech

Gauder, María LaraIcon ; Pepino, Leonardo DanielIcon ; Riera, Pablo ErnestoIcon ; Brussino, Silvina AlejandraIcon ; Vidal Dominguez, JazminIcon ; Gravano, AgustinIcon ; Ferrer, LucianaIcon
Fecha de publicación: 05/2023
Editorial: Academic Press Ltd - Elsevier Science Ltd
Revista: Computer Speech And Language
ISSN: 0885-2308
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Research has shown that trust is an essential aspect of human–computer interaction directly determining the degree to which the person is willing to use a system. An automatic prediction of the level of trust that a user has on a certain system could be used to attempt to correct potential distrust by having the system take relevant actions like, for example, apologizing or explaining its decisions. With this goal in mind, in this work we aim to explore the feasibility of automatically detecting the technical competence or ability of a virtual assistant (VA) from the user's speech, a simple proxy for the task we truly care about: detecting whether the user trusts the ability of the VA. Since, to our knowledge, no public databases were available to perform such study, we developed a novel protocol for collecting speech data from subjects interacting with VAs with different skill levels. The protocol consists of an interactive session where the subject is asked to respond to a series of factual questions with the help of a VA. At the beginning of each session, subjects are informed that the VA they are going to use has been previously rated by other users as being either competent or incompetent. During the session, the VA answers the subjects’ questions consistently to its alleged ability. All interactions are speech-based, with subjects and VAs communicating verbally, which allows the recording of speech produced under different conditions. The goal of the protocol was to induce subjects to either trust or distrust the VA's skills, assuming that this would, in turn, affect their speech patterns in ways that could be automatically detected. Using this protocol, we collected a speech corpus in Argentine Spanish which is publicly available for research use. We show clear evidence that the protocol effectively succeeded in influencing subjects into the desired mental state of either trusting or distrusting the agent's skills. Using the collected data, we developed a system to detect the ability of the VA with which a subject interacted during a session, based on the subject's speech patterns. We found that it was possible to detect whether the VA was competent or incompetent with an accuracy up to 76%, compared to a random baseline of 50%. Our analysis suggests that these results are possible because the subjects change the way they speak to the VA depending on whether they perceive it as more or less competent; that is, depending on whether they trust its ability or not.
Palabras clave: HUMAN–COMPUTER INTERACTION , SPEECH PROCESSING , SPEECH RESOURCES , TRUST
Ver el registro completo
 
Archivos asociados
Tamaño: 1.268Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/224749
URL: https://www.sciencedirect.com/science/article/pii/S0885230823000062
DOI: https://doi.org/10.1016/j.csl.2023.101487
Colecciones
Articulos (IIPSI)
Articulos de INSTITUTO DE INVESTIGACIONES PSICOLOGICAS
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Gauder, María Lara; Pepino, Leonardo Daniel; Riera, Pablo Ernesto; Brussino, Silvina Alejandra; Vidal Dominguez, Jazmin; et al.; Towards detecting the level of trust in the skills of a virtual assistant from the user's speech; Academic Press Ltd - Elsevier Science Ltd; Computer Speech And Language; 80; 5-2023; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES