Artículo
Relative entropy of an interval for a massless boson at finite temperature
Fecha de publicación:
06/2023
Editorial:
American Physical Society
Revista:
Physical Review D
ISSN:
2470-0010
e-ISSN:
2470-0029
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We compute Araki's relative entropy associated with a bounded interval I=(a,b) between a thermal state and a coherent excitation of itself in the bosonic U(1)-current model, namely the (derivative of the) chiral boson. For this purpose we briefly review some recent results on the entropy of standard subspaces and on the relative entropy of nonpure states such as thermal states. In particular, recently Bostelmann, Cadamuro, and Del Vecchio have obtained the relative entropy at finite temperature for the unbounded interval (-∞,t), using previous results of Borchers and Yngvason, mainly a unitary dilation that provides the modular evolution in the negative half-line. Here we find a unitary rotation in order to make use of the full PSL(2,R) symmetries and obtain the modular group, the modular Hamiltonian, and the relative entropy S of a bounded interval at finite temperature. Such relative entropy entails both a Bekenstein-like bound and a QNEC-like bound, but violates S′′≥0 (derivative with respect to the length of the interval, with its center fixed). Finally, we extend the results to the free massless boson in 1+1 dimensions with analogous bounds.
Palabras clave:
CFT
,
RELATIVE ENTROPY
,
THERMAL STATE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Garbarz, Alan Nicolás; Palau, Gabriel Alexis; Relative entropy of an interval for a massless boson at finite temperature; American Physical Society; Physical Review D; 107; 12; 6-2023; 1-13
Compartir
Altmétricas