Artículo
Two-phase Stefan problem for generalized heat equation with nonlinear thermal coefficients
Fecha de publicación:
12/2023
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Nonlinear Analysis-real World Applications
ISSN:
1468-1218
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article we study a mathematical model of the heat transfer in semi infinite material with a variable cross section, when the radial component of the temperature gradient can be neglected in comparison with the axial component. In particular, the temperature distribution in liquid and solid phases of such kind of body can be modeled by Stefan problem for the generalized heat equation. The method of solution is based on similarity principle, which enables us to reduce generalized heat equation to nonlinear ordinary differential equation. Moreover, we determine temperature solution for two phases and free boundaries which describe the position of boiling and melting interfaces. Existence and uniqueness of the similarity type solution is provided by using the fixed point Banach theorem.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Targyn Nauryz; Briozzo, Adriana Clotilde; Two-phase Stefan problem for generalized heat equation with nonlinear thermal coefficients; Pergamon-Elsevier Science Ltd; Nonlinear Analysis-real World Applications; 74; 12-2023; 1-20
Compartir
Altmétricas