Mostrar el registro sencillo del ítem
dc.contributor.author
Avila, Luis Omar
dc.contributor.author
Martinez, Ernesto Carlos
dc.date.available
2017-08-15T14:55:21Z
dc.date.issued
2014-05
dc.identifier.citation
Avila, Luis Omar; Martinez, Ernesto Carlos; Behavior monitoring under uncertainty using Bayesian surprise and optimal action selection; Elsevier; Expert Systems with Applications; 41; 14; 5-2014; 6327-6345
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/22441
dc.description.abstract
The increasing trend towards delegating tasks to autonomous artificial agents in safety–critical sociotechnical systems makes monitoring an action selection policy of paramount importance. Agent behavior monitoring may profit from a stochastic specification of an optimal policy under uncertainty. A probabilistic monitoring approach is proposed to assess if an agent behavior (or policy) respects its specification. The desired policy is modeled by a prior distribution for state transitions in an optimally-controlled stochastic process. Bayesian surprise is defined as the Kullback–Leibler divergence between the state transition distribution for the observed behavior and the distribution for optimal action selection. To provide a sensitive on-line estimation of Bayesian surprise with small samples twin Gaussian processes are used. Timely detection of a deviant behavior or anomaly in an artificial pancreas highlights the sensitivity of Bayesian surprise to a meaningful discrepancy regarding the stochastic optimal policy when there exist excessive glycemic variability, sensor errors, controller ill-tuning and infusion pump malfunctioning. To reject outliers and leave out redundant information, on-line sparsification of data streams is proposed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Bayesian Surprise
dc.subject
Artificial Pancreas
dc.subject
Behavior Monitoring
dc.subject
Optimal Action Selection
dc.subject
Kullback–Leibler Divergence
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Behavior monitoring under uncertainty using Bayesian surprise and optimal action selection
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-08-04T15:35:13Z
dc.journal.volume
41
dc.journal.number
14
dc.journal.pagination
6327-6345
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Expert Systems with Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2014.04.031
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414002541
Archivos asociados