Mostrar el registro sencillo del ítem

dc.contributor.author
Avila, Luis Omar  
dc.contributor.author
Martinez, Ernesto Carlos  
dc.date.available
2017-08-15T14:55:21Z  
dc.date.issued
2014-05  
dc.identifier.citation
Avila, Luis Omar; Martinez, Ernesto Carlos; Behavior monitoring under uncertainty using Bayesian surprise and optimal action selection; Elsevier; Expert Systems with Applications; 41; 14; 5-2014; 6327-6345  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/22441  
dc.description.abstract
The increasing trend towards delegating tasks to autonomous artificial agents in safety–critical sociotechnical systems makes monitoring an action selection policy of paramount importance. Agent behavior monitoring may profit from a stochastic specification of an optimal policy under uncertainty. A probabilistic monitoring approach is proposed to assess if an agent behavior (or policy) respects its specification. The desired policy is modeled by a prior distribution for state transitions in an optimally-controlled stochastic process. Bayesian surprise is defined as the Kullback–Leibler divergence between the state transition distribution for the observed behavior and the distribution for optimal action selection. To provide a sensitive on-line estimation of Bayesian surprise with small samples twin Gaussian processes are used. Timely detection of a deviant behavior or anomaly in an artificial pancreas highlights the sensitivity of Bayesian surprise to a meaningful discrepancy regarding the stochastic optimal policy when there exist excessive glycemic variability, sensor errors, controller ill-tuning and infusion pump malfunctioning. To reject outliers and leave out redundant information, on-line sparsification of data streams is proposed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Bayesian Surprise  
dc.subject
Artificial Pancreas  
dc.subject
Behavior Monitoring  
dc.subject
Optimal Action Selection  
dc.subject
Kullback–Leibler Divergence  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Behavior monitoring under uncertainty using Bayesian surprise and optimal action selection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-08-04T15:35:13Z  
dc.journal.volume
41  
dc.journal.number
14  
dc.journal.pagination
6327-6345  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.description.fil
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2014.04.031  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414002541