Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An In-depth Benchmarking of Evolutionary and Swarm Intelligence Algorithms for Autoscaling Parameter Sweep Applications on Public Clouds

Yannibelli, Virginia DanielaIcon ; Pacini Naumovich, Elina RocíoIcon ; Monge Bosdari, David AntonioIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Rodríguez, Guillermo HoracioIcon ; Millán, Emmanuel NicolásIcon ; Santos, Jorge Ruben
Fecha de publicación: 02/2023
Editorial: Hindawi Publishing Corporation
Revista: Scientific Programming
ISSN: 1058-9244
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Many important computational applications in science, engineering, industry, and technology are represented by PSE (parameter sweep experiment) applications. Tese applications involve a large number of resource-intensive and independent computational tasks. Because of this, cloud autoscaling approaches have been proposed to execute PSE applications on public cloud environments that ofer instances of diferent VM (virtual machine) types, under a pay-per-use scheme, to execute diverse applications. One of the most recent approaches is the autoscaler MOEA (multiobjective evolutive algorithm), which is based on the multiobjective evolutionary algorithm NSGA-II (nondominated sorting genetic algorithm II). MOEA considers on-demand and spot VM instances and three optimization objectives relevant for users: minimizing the computing time, monetary cost, and spot instance interruptions of the application’s execution. However, MOEA’s performance regarding these optimization objectives depends signifcantly on the optimization algorithm used. It has been shown recently that MOEA’s performance improves considerably when NSGA-II is replaced by a more recent algorithm named NSGA-III. In this paper, we analyze the incorporation of other multiobjective optimization algorithms into MOEA to enhance the performance of this autoscaler. First, we consider three multiobjective optimization algorithms named E-NSGA-III (extreme NSGA-III), SMS-EMOA (S-metric selection evolutionary multiobjective optimization algorithm), and SMPSO (speed-constrained multiobjective particle swarm optimization), which have behavioral diferences with NSGA-III. Ten, we evaluate the performance of MOEA with each of these algorithms, considering the three optimization objectives, on four real-world PSE applications from the meteorology and molecular dynamics areas, considering diferent application sizes. To do that, we use the well-known CloudSim simulator and consider diferent VM types available in Amazon EC2. Finally, we analyze the obtained performance results, which show that MOEA with E-NSGA-III arises as the best alternative, reaching better and signifcant savings in terms of computing time (10%–17%), monetary cost (10%– 40%), and spot instance interruptions (33%–100%).
Palabras clave: PARAMETER SWEEP EXPERIMENTS , CLOUD COMPUTING , CLOUD AUTOSCALING , MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM , MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.546Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/224139
URL: https://www.hindawi.com/journals/sp/2023/8345646/
DOI: http://dx.doi.org/10.1155/2023/8345646
Colecciones
Articulos(ICB)
Articulos de INSTITUTO INTERDISCIPLINARIO DE CIENCIAS BASICAS
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Yannibelli, Virginia Daniela; Pacini Naumovich, Elina Rocío; Monge Bosdari, David Antonio; Mateos Diaz, Cristian Maximiliano; Rodríguez, Guillermo Horacio; et al.; An In-depth Benchmarking of Evolutionary and Swarm Intelligence Algorithms for Autoscaling Parameter Sweep Applications on Public Clouds; Hindawi Publishing Corporation; Scientific Programming; 2023; 2-2023; 1-26
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES