Mostrar el registro sencillo del ítem

dc.contributor.author
Ghanbari, Farshad  
dc.contributor.author
Rodriguez, Eduardo Gabriel  
dc.contributor.author
Millán, Raúl Daniel  
dc.contributor.author
Simonetti, Francesco  
dc.contributor.author
Argüelles, Andrea P.  
dc.contributor.author
Peco, Christian  
dc.date.available
2024-01-18T14:51:36Z  
dc.date.issued
2023-02  
dc.identifier.citation
Ghanbari, Farshad; Rodriguez, Eduardo Gabriel; Millán, Raúl Daniel; Simonetti, Francesco; Argüelles, Andrea P.; et al.; Modeling of wave propagation in polycrystalline ice with hierarchical density gradients; Elsevier Science; Finite Elements in Analysis and Design; 217; 2-2023; 1-13  
dc.identifier.issn
0168-874X  
dc.identifier.uri
http://hdl.handle.net/11336/224124  
dc.description.abstract
Polycrystalline solids are composed of many small grains of varying sizes and crystallographic orientations. An elastic wave that propagates through such a material experiences distortion and attenuation. While the influence on propagation in random configurations can be captured with conventional statistical descriptors, the role of second-order features such as the hierarchical gradient in material properties has not been explored. In this paper, we optimize a numerical strategy based on Finite Elements and Local Max-Entropy approximants to characterize the role of grain density gradients on ultrasonic attenuation. We focus on ice as a model for mesoscale ordered configurations due to its relevance to the emerging technology of cryoultrasonics. Our simulations in one- and two-dimensional settings indicate that second-order descriptors are required to predict attenuation in polycrystalline ice. Furthermore, we define a novel parameter, based on the standard deviation of the speed of sound gradient distribution, which shows a quadratic relationship with the ultrasonic attenuation. The model results can be understood as a phase diagram for the design of metamaterials with specific ultrasonic scattering properties.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ATTENUATION  
dc.subject
FINITE ELEMENTS  
dc.subject
ICE MECHANICS  
dc.subject
SCATTERING  
dc.subject
STATISTICAL DESCRIPTORS  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Modeling of wave propagation in polycrystalline ice with hierarchical density gradients  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-18T14:19:56Z  
dc.journal.volume
217  
dc.journal.pagination
1-13  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Ghanbari, Farshad. University of Pennsylvania; Estados Unidos  
dc.description.fil
Fil: Rodriguez, Eduardo Gabriel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Simonetti, Francesco. University of Cincinnati; Estados Unidos  
dc.description.fil
Fil: Argüelles, Andrea P.. University of Pennsylvania; Estados Unidos  
dc.description.fil
Fil: Peco, Christian. University of Pennsylvania; Estados Unidos  
dc.journal.title
Finite Elements in Analysis and Design  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168874X23000094  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.finel.2023.103916