Mostrar el registro sencillo del ítem

dc.contributor.author
Fernández, María de Los Ángeles  
dc.contributor.author
Assof Roa, Mariela Vanesa  
dc.contributor.author
Jofre, Viviana Patricia  
dc.contributor.author
Silva, María Fernanda  
dc.date.available
2017-08-15T12:40:13Z  
dc.date.issued
2014-04-17  
dc.identifier.citation
Fernández, María de Los Ángeles; Assof Roa, Mariela Vanesa; Jofre, Viviana Patricia; Silva, María Fernanda; Volatile profile characterization of extra virgin olive oils from Argentina by HS-SPME/GC-MS and multivariate pattern recognition tools; Springer; Food Analytical Methods; 7; 10; 17-4-2014; 2122-2136  
dc.identifier.issn
1936-9751  
dc.identifier.uri
http://hdl.handle.net/11336/22410  
dc.description.abstract
The distinctive aroma of virgin olive oil is attributed to a large number of chemical compounds of different classes such as aldehydes, alcohols, esters, hydrocarbons, ketones, furans, and other volatile compounds that are not yet identified. The aim of the present study lies in the characterization of compound volatile profile of the most representative olive oil cultivars produced in Argentina. The methodology proposed was based on the development of headspace (HS)-SPME/GC-MS with the subsequent analysis of the chemical fingerprints using a discriminant analysis method and a principal component analysis data compression strategy to distinguish olive oils from different varietal origins. Carboxen/polydimethylsiloxane (75 μm) fiber was the most efficient to trap volatile compounds. Optimization of the SPME conditions was also carried out using multivariate methods. To avoid the influence of factors other than the cultivar, olive trees were cultivated under the same agronomic and pedoclimatic conditions; olive fruits were picked at the same stage of ripeness, and their oils were extracted with the same processing system. Volatile fractions from oils of the analyzed cultivars consisted of a complex mixture of more than 40 compounds. Both quantitative and qualitative differences were found among cultivars. The analytical data association with multivariate analysis constitutes a reliable analytical tool with potential ability to discriminate monovarietal extra virgin olive oil from Argentina.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Gc-Ms  
dc.subject
Olive Oil  
dc.subject
Spme Optimization  
dc.subject
Varietal Characterization  
dc.subject
Multivariate Analysis  
dc.subject
Argentine  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Volatile profile characterization of extra virgin olive oils from Argentina by HS-SPME/GC-MS and multivariate pattern recognition tools  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-13T17:53:25Z  
dc.identifier.eissn
1936-976X  
dc.journal.volume
7  
dc.journal.number
10  
dc.journal.pagination
2122-2136  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Fernández, María de Los Ángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina  
dc.description.fil
Fil: Assof Roa, Mariela Vanesa. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan. Estación Experimental Agropecuaria Mendoza. Laboratorio de Aromas y Sustancias Naturales; Argentina  
dc.description.fil
Fil: Jofre, Viviana Patricia. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-San Juan. Estación Experimental Agropecuaria Mendoza. Laboratorio de Aromas y Sustancias Naturales; Argentina  
dc.description.fil
Fil: Silva, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina  
dc.journal.title
Food Analytical Methods  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12161-014-9854-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12161-014-9854-2