Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Linear mixed-effect models for correlated response to process electroencephalogram recordings

Meinardi, Vanesa BeatrizIcon ; Diaz López, Juan M.; Diaz Fajreldines, Hugo M.Icon ; Boyallian, CarinaIcon ; Balzarini, Monica GracielaIcon
Fecha de publicación: 11/2023
Editorial: Springer
Revista: Cognitive Neurodynamics
ISSN: 1871-4080
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

A data set of clinical studies of electroencephalogram recordings (EEG) following data acquisition protocols in control individuals (Eyes Closed Wakefulness - Eyes Open Wakefulness, Hyperventilation, and Optostimulation) are quantified with information theory metrics, namely permutation Shanon entropy and permutation Lempel Ziv complexity, to identify functional changes. This work implement Linear mixed-effects models (LMEMs) for confirmatory hypothesis testing. The results show that EEGs have high variability for both metrics and there is a positive correlation between them. The mean of permutation Lempel-Ziv complexity and permutation Shanon entropy used simultaneously for each of the four states are distinguishable from each other. However, used separately, the differences between permutation Lempel-Ziv complexity or permutation Shanon entropy of some states were not statistically significant. This shows that the joint use of both metrics provides more information than the separate use of each of them. Despite their wide use in medicine, LMEMs have not been commonly applied to simultaneously model metrics that quantify EEG signals. Modeling EEGs using a model that characterizes more than one response variable and their possible correlations represents a new way of analyzing EEG data in neuroscience.
Palabras clave: CORRELATE RESPONSES , ELECTROENCEPHALOGRAPHY , LEMPEL-ZIV COMPLEXITY , MIXED LINEAR MODELS , PERMUTATION ENTROPY
Ver el registro completo
 
Archivos asociados
Tamaño: 930.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/224100
URL: https://link.springer.com/article/10.1007/s11571-023-09984-6
DOI: http://dx.doi.org/10.1007/s11571-023-09984-6
Colecciones
Articulos (UFYMA)
Articulos de UNIDAD DE FITOPATOLOGIA Y MODELIZACION AGRICOLA
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Meinardi, Vanesa Beatriz; Diaz López, Juan M.; Diaz Fajreldines, Hugo M.; Boyallian, Carina; Balzarini, Monica Graciela; Linear mixed-effect models for correlated response to process electroencephalogram recordings; Springer; Cognitive Neurodynamics; 2023; 11-2023; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES