Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Environmental, meteorological and pandemic restriction-related variables affecting SARS-CoV-2 cases

Abril, Gabriela AlejandraIcon ; Mateos, Ana CarolinaIcon ; Tavera Busso, IvánIcon ; Carreras, Hebe AlejandraIcon
Fecha de publicación: 10/2023
Editorial: Springer
Revista: Environmental Science and Pollution Research
e-ISSN: 1614-7499
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias Medioambientales

Resumen

Three years have passed since the outbreak of Coronavirus Disease 2019 (COVID-19) brought the world to standstill. In most countries, the restrictions have ended, and the immunity of the population has increased; however, the possibility of new dangerous variants emerging remains. Therefore, it is crucial to develop tools to study and forecast the dynamics of future pandemics. In this study, a generalized additive model (GAM) was developed to evaluate the impact of meteorological and environmental variables, along with pandemic-related restrictions, on the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Córdoba, Argentina. The results revealed that mean temperature and vegetation cover were the most signiicant predictors afecting SARS-CoV-2 cases, followed by government restriction phases, days of the week, and hours of sunlight. Although ine particulate matter (PM2.5) and NO were less related, they improved the model?s predictive power, and a 1-day lag enhanced accuracy metrics.The models exhibited strong adjusted coeicients of determination (R2 adj) but did not perform as well in terms of root-mean-square error (RMSE). This suggests that the number of cases maynot be the primary variable for controlling the spread of the disease. Furthermore, the increase in positive cases related to policy interventions may indicate the presence of lockdown fatigue. This study highlights the potential of data science as a management tool for identifying crucial variables that inluence epidemiological patterns and can be monitored to prevent an overload in the healthcare system.
Palabras clave: SARS-COV-2-CASES , METEOROLOGICAL AND ENVIRONMENTAL VARIABLES , GENERALIZED ADDITIVE MODEL , PM2.5 , COVID-19
Ver el registro completo
 
Archivos asociados
Tamaño: 981.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/224024
URL: https://link.springer.com/10.1007/s11356-023-30578-6
DOI: http://dx.doi.org/10.1007/s11356-023-30578-6
Colecciones
Articulos(IMBIV)
Articulos de INST.MULTIDISCIPL.DE BIOLOGIA VEGETAL (P)
Citación
Abril, Gabriela Alejandra; Mateos, Ana Carolina; Tavera Busso, Iván; Carreras, Hebe Alejandra; Environmental, meteorological and pandemic restriction-related variables affecting SARS-CoV-2 cases; Springer; Environmental Science and Pollution Research; 2023; 10-2023; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES