Mostrar el registro sencillo del ítem

dc.contributor.author
Montagna, Agustín Francisco  
dc.contributor.author
Cafaro, Diego Carlos  
dc.contributor.author
Grossmann, Ignacio E.  
dc.contributor.author
Ozen, Ozgur  
dc.contributor.author
Shao, Yufen  
dc.contributor.author
Zhang, Ti  
dc.contributor.author
Guo, Yuanyuan  
dc.contributor.author
Wu, Xiao Hui  
dc.contributor.author
Furman, Kevin C.  
dc.date.available
2024-01-17T11:57:06Z  
dc.date.issued
2022-10  
dc.identifier.citation
Montagna, Agustín Francisco; Cafaro, Diego Carlos; Grossmann, Ignacio E.; Ozen, Ozgur; Shao, Yufen; et al.; Surface facility optimization for combined shale oil and gas development strategies; Springer; Optimization And Engineering; 24; 4; 10-2022; 2321-2355  
dc.identifier.issn
1389-4420  
dc.identifier.uri
http://hdl.handle.net/11336/223902  
dc.description.abstract
In the context of a global energy transition, oil and gas will remain an important part of the energy mix, especially in developing countries. The challenge of energy companies is to adapt to a changing policy and investment landscape, and still remain competitive. In this work we present a generalized optimization framework for the design of oil and gas gathering networks accounting for combined shale oil and gas development strategies. We develop mixed-integer linear (MILP) and quadratically constrained models (MIQCP) to optimally determine the network of pipelines, separation, processing and delivery facilities for both oil and gas. In contrast to previous approaches, the networks are built with no predetermined number of echelons. We assume that there is a set of generic nodes to be connected among themselves to reach the final destinations. By including pressures as decisions variables, flowrates and flow directions can be optimally determined along the time horizon to make a better use of the transportation capacity. Stochastic programming extensions of the models permit to determine the network of surface facilities that maximizes the expected net present value of the project under uncertain scenarios. Oil and gas prices may significantly change in the future, leaving open the question as to whether the focus will be on developing wells producing more oil than gas, or vice-versa. Shale oil and shale gas wells usually coexist in nearby regions of the same formation. Therefore, there is a nontrivial decision on where and when to build and expand the gathering networks. We assess the potential of the formulations by solving four case studies from the unconventionals industry.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DESIGN  
dc.subject
GATHERING  
dc.subject
OPTIMIZATION  
dc.subject
PIPELINE NETWORK  
dc.subject
SHALE OIL AND GAS  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Surface facility optimization for combined shale oil and gas development strategies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-17T11:23:08Z  
dc.journal.volume
24  
dc.journal.number
4  
dc.journal.pagination
2321-2355  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Montagna, Agustín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Grossmann, Ignacio E.. University of Carnegie Mellon; Estados Unidos  
dc.description.fil
Fil: Ozen, Ozgur. No especifíca;  
dc.description.fil
Fil: Shao, Yufen. No especifíca;  
dc.description.fil
Fil: Zhang, Ti. No especifíca;  
dc.description.fil
Fil: Guo, Yuanyuan. No especifíca;  
dc.description.fil
Fil: Wu, Xiao Hui. No especifíca;  
dc.description.fil
Fil: Furman, Kevin C.. No especifíca;  
dc.journal.title
Optimization And Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11081-022-09775-8