Mostrar el registro sencillo del ítem
dc.contributor.author
Olmo, Matías Ezequiel
dc.contributor.author
Balmaceda Huarte, Rocio
dc.contributor.author
Bettolli, Maria Laura
dc.date.available
2024-01-17T11:55:48Z
dc.date.issued
2022-04
dc.identifier.citation
Olmo, Matías Ezequiel; Balmaceda Huarte, Rocio; Bettolli, Maria Laura; Multi-model ensemble of statistically downscaled GCMs over southeastern South America: historical evaluation and future projections of daily precipitation with focus on extremes; Springer; Climate Dynamics; 59; 9-10; 4-2022; 3051-3068
dc.identifier.issn
0930-7575
dc.identifier.uri
http://hdl.handle.net/11336/223894
dc.description.abstract
High-resolution rainfall information is of great value, particularly over southeastern South America (SESA) where the observed and projected climate changes pose a substantial threat to socio-economic activities and the hydrological sector. Consequently, this work focuses on the construction of an unprecedented multi-model ensemble of statistically downscaled (ESD) global climate models (GCMs) for daily precipitation. Different statistical techniques were employed - including analogs, stochastic versions of regression-based models involving neural networks and generalised linear models and linear regressions conditioned by weather types - and a variety of CMIP5 and CMIP6 models. In general, most of the models added value in the representation of the main features of daily precipitation, especially in the spatial and intra-annual variability of extremes. The statistical models were sensible to the driving GCMs, although the ESD family choice also introduced differences among the simulations. The ESD projections depicted increases in mean precipitation associated with a rising frequency of extreme events - mostly during the warm season - following the observed trends over SESA. Change rates were consistent among downscaled models up to mid-21st century, when model spread started to emerge. Furthermore, these projections were compared to the available CORDEX-CORE RCM simulations, evidencing a consistent agreement between statistical and dynamical downscaling procedures in terms of the sign of the changes, presenting the main differences in their intensity. Overall, this study evidences the potential of statistical downscaling in a changing climate and contributes to its undergoing development over SESA.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLIMATE CHANGE
dc.subject
CMIP5
dc.subject
CMIP6
dc.subject
EXTREME RAINFALL
dc.subject
SOUTHEASTERN SOUTH AMERICA
dc.subject
STATISTICAL DOWNSCALING
dc.subject.classification
Investigación Climatológica
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multi-model ensemble of statistically downscaled GCMs over southeastern South America: historical evaluation and future projections of daily precipitation with focus on extremes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-15T14:47:50Z
dc.journal.volume
59
dc.journal.number
9-10
dc.journal.pagination
3051-3068
dc.journal.pais
Alemania
dc.description.fil
Fil: Olmo, Matías Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
dc.description.fil
Fil: Balmaceda Huarte, Rocio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Bettolli, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
dc.journal.title
Climate Dynamics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00382-022-06236-x
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00382-022-06236-x
Archivos asociados