Artículo
Extensions of linear cycle sets and cohomology
Fecha de publicación:
03/2023
Editorial:
Springer
Revista:
European Journal of Mathematics
ISSN:
2199-675X
e-ISSN:
2199-6768
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We generalize the cohomology theory for linear cycle sets introduced by Lebed and Vendramin. Our cohomology classifies extensions of linear cycle sets by trivial ideals, whereas the cohomology of Lebed and Vendramin only deals with central ideals I (which are automatically trivial). Therefore our theory gives an analog to the theory of extensions of braces by trivial ideals constructed by Bachiller, but from a cohomological point of view. We also study the general notions of extensions of linear cycle sets and the equivalence of extensions.
Palabras clave:
COHOMOLOGY
,
EXTENSIONS
,
LINEAR CYCLE SETS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Extensions of linear cycle sets and cohomology; Springer; European Journal of Mathematics; 9; 1; 3-2023; 1-29
Compartir
Altmétricas