Artículo
Neurospheres obtained from the ciliary margin of the chicken eye possess positional values and retinal ganglion cells differentiated from them respond to EphA/ephrin-A system
Fiore, Luciano
; Olmos Carreño, Cindy Lorena
; Medori, Mara Solange
; Spelzini, Gonzalo Nicolás
; Sánchez, Viviana; Scicolone, Gabriel Edgardo
Fecha de publicación:
01/2022
Editorial:
Academic Press Ltd - Elsevier Science Ltd
Revista:
Experimental Eye Research
ISSN:
0014-4835
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In the Central Nervous System (CNS) there are some niches of undifferentiated, neural progenitor/stem cells that produce active neurogenesis originating functionally integrated neurons. In the chicken eye, there is a neurogenic niche in the ciliary margin (CM) which has the ability to originate all the cell types of the neural retina. During retinal development, cells acquire positional values along the radial and tangential axes. These positional values are the necessary base for the formation of neural circuits. In this work, we have analyzed whether neural progenitor cells (NPCs) of CM have positional values regarding the radial and tangential axes, and if they have the potential to differentiate into retinal ganglion cells (RGCs) in vitro. Furthermore, we analyzed whether these RGCs preserve positional values along the tangential axis and respond to the Eph/ephrin axon guidance system. In order to answer these questions, we cultured NPCs obtained from the CM favoring the formation of neurospheres. Our results showed that the expanding neurospheres are polarized structures in which their cells have specific positional values along their radial axis, recapitulating the apical-basal polarity of the CM and the neuroepithelium. We also showed that NPCs obtained from CM possess positional values along the nasal-temporal retinal axis. When the neurospheres were submitted to differentiation conditions, we observed that NPCs can differentiate into RGCs. These RGCs present long axons that express different members of the Eph/ephrin system and they are competent to respond to this axon guidance cue system, recapitulating the axonal behavior during retinotectal neural map development. All these findings contribute to understand the cellular and molecular mechanisms involved in CNS development and regeneration.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IBCN)
Articulos de INST.DE BIOLO.CEL.Y NEURCS."PROF.E.DE ROBERTIS"
Articulos de INST.DE BIOLO.CEL.Y NEURCS."PROF.E.DE ROBERTIS"
Citación
Fiore, Luciano; Olmos Carreño, Cindy Lorena; Medori, Mara Solange; Spelzini, Gonzalo Nicolás; Sánchez, Viviana; et al.; Neurospheres obtained from the ciliary margin of the chicken eye possess positional values and retinal ganglion cells differentiated from them respond to EphA/ephrin-A system; Academic Press Ltd - Elsevier Science Ltd; Experimental Eye Research; 217; 1-2022; 1-16
Compartir
Altmétricas