Mostrar el registro sencillo del ítem

dc.contributor.author
Collazo, Soledad Maribel  
dc.contributor.author
Barrucand, Mariana Graciela  
dc.contributor.author
Rusticucci, Matilde Monica  
dc.date.available
2024-01-15T15:57:48Z  
dc.date.issued
2022-04  
dc.identifier.citation
Collazo, Soledad Maribel; Barrucand, Mariana Graciela; Rusticucci, Matilde Monica; Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach; Elsevier; Climate Services; 26; 4-2022; 1-18  
dc.identifier.issn
2405-8807  
dc.identifier.uri
http://hdl.handle.net/11336/223631  
dc.description.abstract
Several socio-economic sectors are sensitive to the occurrence of extreme climate events. The ability to predict these extremes will allow precautionary measures to reduce their impacts. This work aims to disseminate a seasonal statistical forecast of daily temperature extremes in Argentina to the international scientific community. At the local level, this forecast is shared at monthly meetings organized by the Argentine National Meteorological Service and attended by different users. For the temperature extremes modeling, several predictors and statistical techniques were applied. We estimated the probability of each tercile category (above-normal, near-normal, and below-normal) by quantifying the percentage of models that predict each of them. The forecasts were verified by calculating different metrics. In general, we observed that the forecast system has less skill to discriminate the near-normal category in all seasons, and the other categories present a skill highly variable according to the season, region, and extreme index. The verification process revealed that predictability increases for all extreme indices with a previous La Niña phase. This product represents an advance towards an operational seasonal forecast of extreme temperatures in Argentina because it offers predictions based on a detailed study of predictors in the region, the incorporation of multiple statistical methodologies, and the predicted variables are not the most typical ones offered by forecasting centers. Finally, it is highlighted that the accuracy rate obtained with this product exceeds a forecast based on climatology, i.e., despite the uncertainties, our forecasts provide additional information to users for decision making.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ARGENTINA  
dc.subject
EMPIRICAL MODELS  
dc.subject
EXTREME TEMPERATURES  
dc.subject
PREDICTORS  
dc.subject
SEASONAL PREDICTION  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Seasonal forecast of the percentage of days with extreme temperatures in central-northern Argentina: An operational statistical approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-15T14:40:52Z  
dc.journal.volume
26  
dc.journal.pagination
1-18  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Collazo, Soledad Maribel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.description.fil
Fil: Barrucand, Mariana Graciela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.description.fil
Fil: Rusticucci, Matilde Monica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.journal.title
Climate Services  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2405880722000115  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.cliser.2022.100293