Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

AntTracker: A low-cost and efficient computer vision approach to research leaf-cutter ants behavior

Sabattini, Julian AlbertoIcon ; Sturniolo, Francisco; Bollazzi, Martín; Bugnon, Leandro ArielIcon
Fecha de publicación: 10/2023
Editorial: Elsevier
Revista: Smart Agricultural Technology
ISSN: 2772-3755
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Leaf-cutter ants play a crucial role in agroecosystems, and understanding their behavior is key to developing effective damage control strategies. While several tracking solutions exist for ants in controlled environments or on aerial images, accurately measuring ant behavior in the wild remains a challenge. In this work, we propose a three-stage processing pipeline that segments individual ants, tracks their movement, and classifies whether they are carrying a leaf using a convolutional neural network. The output of the pipeline includes a timestamped record of the activity on the trail, accounting for parameters such as ant velocity, size and if it is going from or to the nest. We use the recently developed portable device AntVideoRecord to register video of a selected ant trail. To validate our approach, we collected a labeled dataset and evaluated each stage using standard metrics, achieving a median F2 score of 83% for segmentation, MOTA of 97% for tracking and F1 of 82% for detecting ants carrying a leaf. We then carried out a larger use case in the wild, demonstrating the effectiveness of our approach in capturing the intricate behaviors of leaf-cutter ants. We believe our method has the potential to inform the development of more effective ant damage control strategies in agroecosystems.
Palabras clave: ANT TRACKING , DEEP LEARNING , IMAGE PROCESSING , LEAF-CUTTER ANTS , TRACKING IN THE WILD
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.642Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/223606
URL: https://www.sciencedirect.com/science/article/pii/S2772375523000825
DOI: https://doi.org/10.1016/j.atech.2023.100252
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Sabattini, Julian Alberto; Sturniolo, Francisco; Bollazzi, Martín; Bugnon, Leandro Ariel; AntTracker: A low-cost and efficient computer vision approach to research leaf-cutter ants behavior; Elsevier; Smart Agricultural Technology; 5; 100252; 10-2023; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES