Mostrar el registro sencillo del ítem

dc.contributor.author
Miller Branco Ferraz, Franz  
dc.contributor.author
Sztangret, Lukasz  
dc.contributor.author
Carazo, Fernando Diego  
dc.contributor.author
Buzolin, Ricardo Henrique  
dc.contributor.author
Wang, Peng  
dc.contributor.author
Szeliga, Danuta  
dc.contributor.author
dos Santos Effertz, Pedro  
dc.contributor.author
Macio, Piotr  
dc.contributor.author
Krumphals, Alfred  
dc.contributor.author
Poletti, Maria Cecilia  
dc.date.available
2024-01-11T14:18:28Z  
dc.date.issued
2023-06  
dc.identifier.citation
Miller Branco Ferraz, Franz; Sztangret, Lukasz; Carazo, Fernando Diego; Buzolin, Ricardo Henrique; Wang, Peng; et al.; Metamodelling the hot deformation behaviour of titanium alloys using a mean-field approach; Elsevier; Materials Today Communications; 35; 6-2023; 1-16  
dc.identifier.issn
2352-4928  
dc.identifier.uri
http://hdl.handle.net/11336/223398  
dc.description.abstract
During the thermomechanical processing of titanium alloys in the β-domain, the β-phase undergoes restoration phenomena. This work describes them by a mean-field physical model that correlates the flow stress with the microstructural evolution. To reduce the computational time of process simulations, metamodels are developed for specific outputs of the mean-field physical model using Artificial Neural Network (ANN) and Decision Tree Regression (DTR). The performance of the obtained metamodels is evaluated in terms of the coefficient of determination (R²), the root-mean-square error (RMSE), and the mean relative error (MRE). No significant difference was observed between R2training and R2testing, meaning that all the metamodels correctly generalise the overall behaviour of the outputs for a wide range of inputs. The evolution of the metamodel outputs is compared with the model predictions in two different situations: 1) at a constant strain rate and temperature, and 2) during Finite Element (FE) simulations of the hot deformation of a hat-shaped sample, where temperature and effective strain rate vary at each element during deformation. The evolution of the outputs at constant and non-constant strain rates and temperature demonstrated the robustness of the metamodels in predicting the heterogeneous deformation within a workpiece. The computational time required by the metamodels to calculate selected outputs can be more than 100 times less than that of the model itself at a constant strain rate using MATLAB® and up to 19% less when coupled with FE simulations. The simulation results combined with microstructural analysis are used to visualise the different restoration mechanisms occurring in different regions of the hat-shaped sample as a function of the local thermomechanical history. The changes in strain rate and temperature during deformation influence the evolution of the wall dislocation density and the immobilisation rate of mobile dislocations at subgrain boundaries, leading to different kinetics of microstructure evolution.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORK  
dc.subject
DECISION-TREE REGRESSION  
dc.subject
HOT DEFORMATION  
dc.subject
MEAN-FIELD MODEL  
dc.subject
METAMODEL  
dc.subject
TITANIUM ALLOYS  
dc.subject.classification
Otras Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Metamodelling the hot deformation behaviour of titanium alloys using a mean-field approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-10T17:39:09Z  
dc.journal.volume
35  
dc.journal.pagination
1-16  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Miller Branco Ferraz, Franz. Graz University Of Technology.; Austria  
dc.description.fil
Fil: Sztangret, Lukasz. AGH University of Science and Technology; Polonia  
dc.description.fil
Fil: Carazo, Fernando Diego. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Mecanica Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Buzolin, Ricardo Henrique. Graz University Of Technology.; Austria  
dc.description.fil
Fil: Wang, Peng. Graz University Of Technology.; Austria  
dc.description.fil
Fil: Szeliga, Danuta. AGH University of Science and Technology; Polonia  
dc.description.fil
Fil: dos Santos Effertz, Pedro. No especifíca;  
dc.description.fil
Fil: Macio, Piotr. AGH University of Science and Technology; Polonia  
dc.description.fil
Fil: Krumphals, Alfred. No especifíca;  
dc.description.fil
Fil: Poletti, Maria Cecilia. Graz University Of Technology.; Austria  
dc.journal.title
Materials Today Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352492823008395  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mtcomm.2023.106148