Mostrar el registro sencillo del ítem
dc.contributor.author
Gutierrez, Marisa

dc.contributor.author
Protti, Fabio
dc.contributor.author
Tondato, Silvia Beatriz

dc.date.available
2024-01-10T13:17:44Z
dc.date.issued
2023-01
dc.identifier.citation
Gutierrez, Marisa; Protti, Fabio; Tondato, Silvia Beatriz; Convex geometries over induced paths with bounded length; Elsevier Science; Discrete Mathematics; 346; 1; 1-2023; 1-9
dc.identifier.issn
0012-365X
dc.identifier.uri
http://hdl.handle.net/11336/223178
dc.description.abstract
In this paper we introduce the notion of lk-convexity, a natural restriction of the monophonic convexity. Let G be a graph and k≥2 an integer. A subset S⊆V(G) is lk-convex if and only if for any pair of vertices x,y of S, each induced path of length at most k connecting x and y is completely contained in the subgraph induced by S. The lk-convexity consists of all lk-convex subsets of G. In this work, we characterize lk-convex geometries (graphs that are convex geometries with respect to the lk-convexity) for k∈{2,3}. We show that a graph G is an l2-convex geometry if and only if G is a chordal P4-free graph, and an l3-convex geometry if and only if G is a chordal graph with diameter at most three such that its induced gems satisfy a special “solving” property. As far as the authors know, the class of l3-convex geometries is the first example of a non-hereditary class of convex geometries.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHORDAL GRAPH
dc.subject
CONVEX GEOMETRY
dc.subject
CONVEXITY
dc.subject.classification
Otras Matemáticas

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Convex geometries over induced paths with bounded length
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-09T15:02:23Z
dc.journal.volume
346
dc.journal.number
1
dc.journal.pagination
1-9
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Gutierrez, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Protti, Fabio. Universidade Federal Fluminense; Brasil
dc.description.fil
Fil: Tondato, Silvia Beatriz. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
dc.journal.title
Discrete Mathematics

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012365X22003399
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.disc.2022.113133
Archivos asociados