Mostrar el registro sencillo del ítem
dc.contributor.author
Amherdt, Sebastián
dc.contributor.author
Nieto, Luciana
dc.contributor.author
Carcedo, Ana Julia Paula
dc.contributor.author
Pereira, Ayelen
dc.contributor.author
Cornero, Cecilia
dc.contributor.author
Ciampitti, Ignacio Antonio
dc.date.available
2024-01-09T11:18:27Z
dc.date.issued
2023-03
dc.identifier.citation
Amherdt, Sebastián; Nieto, Luciana; Carcedo, Ana Julia Paula; Pereira, Ayelen; Cornero, Cecilia; et al.; Field maturity detection via interferometric synthetic aperture radar images time-series: a case study for maize crop; Taylor & Francis Ltd; International Journal of Remote Sensing; 44; 5; 3-2023; 1417-1432
dc.identifier.issn
0143-1161
dc.identifier.uri
http://hdl.handle.net/11336/222921
dc.description.abstract
Detecting the field maturity moment for maize (Zea mays L.) crop represents a relevant point to estimate its optimal harvest time. Knowing the optimal harvest time (defined by grain moisture content) at the end of the crop season is a major concern for maize farmers, as it could lead to substantial economic losses if not harvested on time. For this crop, optimal harvest time usually occurs 3–4 weeks after field maturity, depending on weather conditions. Therefore, this study focused on the interferometric coherence time-series analysis at the end of the maize crop season, to indirectly estimate the field maturity. For such purpose, a coherence object-based change detection method using Sentinel-1 SAR images was developed aiming to estimate the potential field maturity time. These estimations were assessed using an independent data set of field maturity dates obtained through field inspection and crop growth modelling. The technique was tested over 52 fields in the northwest region of Kansas, United States, with a detection rate of 80%, and a field maturity estimation error of 10 days (assessed with the root mean square error). The proposed method constitutes a promising approach to estimating the maize field maturity in near-real time, determining the field harvest readiness, and developing a decision support tool to assist farmers in prioritizing the allocation of fields at harvest time.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHANGE DETECTION
dc.subject
INTERFEROMETRIC COHERENCE
dc.subject
MAIZE MATURITY DETECTION
dc.subject.classification
Geociencias multidisciplinaria
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Field maturity detection via interferometric synthetic aperture radar images time-series: a case study for maize crop
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-08T14:21:36Z
dc.journal.volume
44
dc.journal.number
5
dc.journal.pagination
1417-1432
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Amherdt, Sebastián. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.description.fil
Fil: Nieto, Luciana. Kansas State University; Estados Unidos
dc.description.fil
Fil: Carcedo, Ana Julia Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Kansas State University; Estados Unidos
dc.description.fil
Fil: Pereira, Ayelen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
dc.description.fil
Fil: Cornero, Cecilia. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.description.fil
Fil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unidos
dc.journal.title
International Journal of Remote Sensing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01431161.2023.2184214
Archivos asociados