Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On various types of density of numerical radius attaining operators

Dantas, Sheldon; Kim, Sun Kwang; Lee, Han Ju; Mazzitelli, Martin DiegoIcon
Fecha de publicación: 02/2023
Editorial: Taylor & Francis Ltd
Revista: Linear And Multilinear Algebra
ISSN: 0308-1087
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In this paper, we are interested in studying Bishop–Phelps–Bollobás type properties related to the denseness of the operators which attain their numerical radius. We prove that every Banach space with a micro-transitive norm and the second numerical index strictly positive satisfies the Bishop–Phelps–Bollobás point property, and we see that the one-dimensional space is the only one with both the numerical index 1 and the Bishop–Phelps–Bollobás point property. We also consider two weaker properties L (Formula presented.) -nu and L (Formula presented.) -nu, the local versions of Bishop–Phelps–Bollobás point and operator properties respectively, where the η which appears in their definition does not depend just on (Formula presented.) but also on a state (Formula presented.) or on a numerical radius one operator T. We address the relation between the L (Formula presented.) -nu and the strong subdifferentiability of the norm of the space X. We show that finite dimensional spaces and (Formula presented.) are examples of Banach spaces satisfying the L (Formula presented.) -nu, and we exhibit an example of a Banach space with a strongly subdifferentiable norm failing it. We finish the paper by showing that finite dimensional spaces satisfy the L (Formula presented.) -nu and that, if X has a strictly positive numerical index and has the approximation property, this property is equivalent to finite dimensionality.
Palabras clave: 46B20 , BANACH SPACE , BISHOP-PHELPS-BOLLOBÁS PROPERTY , NUMERICAL RADIUS ATTAINING OPERATORS , PRIMARY: 46B04 , SECONDARY: 46B07
Ver el registro completo
 
Archivos asociados
Tamaño: 1.559Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/222919
URL: https://www.tandfonline.com/doi/full/10.1080/03081087.2023.2176413
DOI: http://dx.doi.org/10.1080/03081087.2023.2176413
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Dantas, Sheldon; Kim, Sun Kwang; Lee, Han Ju; Mazzitelli, Martin Diego; On various types of density of numerical radius attaining operators; Taylor & Francis Ltd; Linear And Multilinear Algebra; 2-2023; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES