Mostrar el registro sencillo del ítem

dc.contributor.author
Balmaceda Huarte, Rocio  
dc.contributor.author
Baño Medina, Jorge  
dc.contributor.author
Olmo, Matías Ezequiel  
dc.contributor.author
Bettolli, Maria Laura  
dc.date.available
2024-01-08T14:47:41Z  
dc.date.issued
2023-08  
dc.identifier.citation
Balmaceda Huarte, Rocio; Baño Medina, Jorge; Olmo, Matías Ezequiel; Bettolli, Maria Laura; On the use of convolutional neural networks for downscaling daily temperatures over southern South America in a climate change scenario; Springer; Climate Dynamics; 8-2023; 1-15  
dc.identifier.issn
0930-7575  
dc.identifier.uri
http://hdl.handle.net/11336/222854  
dc.description.abstract
Global Climate Models (GCMs) depict a notable influence of climate change on southern South America (SSA). Future regional-to-local information for adaptation and mitigation policies can be obtained by downscaling over GCMs outputs, increasing the resolution of the climate projections. Current statistical downscaling approaches in the region [e.g., Generalised Linear Models (GLMs)] need to undergo “human-guided” feature selection, which is one of the main sources of uncertainty. Here, we explore the advantages and limitations of using Convolutional Neural Networks (CNNs) in SSA to downscale daily minimum and maximum temperatures. For this purpose, we elaborate three different experiments: a cross-validation (CV) in the present climate; downscaling the historical and RCP8.5 scenarios of the EC-Earth; a pseudo-reality experiment to measure the extrapolation skill. CV-experiment results show no remarkable differences between CNNs and GLMs, although the non-linearity of the CNNs improved the representation of the extreme aspects of temperatures. Additionally, we use eXplainable Artificial Intelligence to prove that co-linearities are better handled in CNNs. The pseudo-reality experiment shows a good extrapolation skill of CNNs, especially when the activation functions are linear. Overall, the automatic skill of CNNs to deal with co-linearities in predictor data—against conventional approaches—together with the plausible climate change projections obtained—verified with the pseudo-reality experiment—make them attractive to be used for downscaling beyond their non-linear nature. These results enforce the idea of incorporating CNNs into the battery of downscaling techniques over SSA and provide experimental guidelines with prospects to be utilised in climate change studies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EXTREME TEMPERATURE  
dc.subject
GLOBAL WARMING  
dc.subject
MACHINE LEARNING  
dc.subject
SOUTHERN SOUTH AMERICA  
dc.subject
STATISTICAL DOWNSCALING  
dc.subject.classification
Investigación Climatológica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the use of convolutional neural networks for downscaling daily temperatures over southern South America in a climate change scenario  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-05T11:44:56Z  
dc.journal.pagination
1-15  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Balmaceda Huarte, Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina  
dc.description.fil
Fil: Baño Medina, Jorge. Consejo Superior de Investigaciones Científicas. Instituto de Física de Cantabria; Argentina  
dc.description.fil
Fil: Olmo, Matías Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina  
dc.description.fil
Fil: Bettolli, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina  
dc.journal.title
Climate Dynamics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00382-023-06912-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00382-023-06912-6