Mostrar el registro sencillo del ítem
dc.contributor.author
Viglietti, Julia S.
dc.contributor.author
Espain, Maria Sol
dc.contributor.author
Díaz, Rodrigo Fernando
dc.contributor.author
Nieto, Luis Agustin
dc.contributor.author
Szewc, Manuel
dc.contributor.author
Bernardi, Guillermo Carlos
dc.contributor.author
Rodríguez, Luis M.
dc.contributor.author
Fregenal, Daniel Eduardo
dc.contributor.author
Saint Martin, María Laura Gisela
dc.contributor.author
Portu, Agustina Mariana
dc.date.available
2024-01-05T18:27:07Z
dc.date.issued
2023-12
dc.identifier.citation
Viglietti, Julia S.; Espain, Maria Sol; Díaz, Rodrigo Fernando; Nieto, Luis Agustin; Szewc, Manuel; et al.; From nuclear track characterization to machine learning based image classification in neutron autoradiography for boron neutron capture therapy; Public Library of Science; Plos One; 18; 12; e0293891; 12-2023; 1-23
dc.identifier.issn
1932-6203
dc.identifier.uri
http://hdl.handle.net/11336/222662
dc.description.abstract
Knowledge of the 10B microdistribution is of great relevance in BNCT studies. Since 10B concentration assesment through neutron autoradiography depends on the correct quantification of tracks in a nuclear track detector, image acquisition and processing conditions should be controlled and verified, in order to obtain accurate results to be applied in the frame of BNCT. With this aim, an image verification process was proposed, based on parameters extracted from the quantified nuclear tracks. Track characterization was performed by selecting a set of morphological and pixel-intensity uniformity parameters from the quantified objects (area, diameter, roundness, aspect ratio, heterogeneity and clumpiness). Their distributions were studied, leading to the observation of varying behaviours in images generated by different samples and acquisition conditions. The distributions corresponding to samples coming from the BNC reaction showed similar attributes in each analyzed parameter, proving to be robust to the experimental process, but sensitive to light and focus conditions. Considering those observations, a manual feature extraction was performed as a pre-processing step. A Support Vector Machine (SVM) and a fully dense Neural Network (NN) were optimized, trained, and tested. The final performance metrics were similar for both models: 93%-93% for the SVM, vs 94%-95% for the NN in accuracy and precision respectively. Based on the distribution of the predicted class probabilities, the latter had a better capacity to reject inadequate images, so the NN was selected to perform the image verification step prior to quantification. The trained NN was able to correctly classify the images regardless of their track density. The exhaustive characterization of the nuclear tracks provided new knowledge related to the autoradiographic images generation. The inclusion of machine learning in the analysis workflow proves to optimize the boron determination process and paves the way for further applications in the field of boron imaging.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Public Library of Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
AUTORADIOGRAPHY
dc.subject
NEUTRON
dc.subject
MACHINE LEARNING
dc.subject
NUCLEAR TRACKS
dc.subject.classification
Física Nuclear
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
From nuclear track characterization to machine learning based image classification in neutron autoradiography for boron neutron capture therapy
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-05T11:40:21Z
dc.journal.volume
18
dc.journal.number
12; e0293891
dc.journal.pagination
1-23
dc.journal.pais
Estados Unidos
dc.journal.ciudad
San Francisco
dc.description.fil
Fil: Viglietti, Julia S.. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina
dc.description.fil
Fil: Espain, Maria Sol. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina
dc.description.fil
Fil: Díaz, Rodrigo Fernando. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Fisicas. - Universidad Nacional de San Martin. Instituto de Ciencias Fisicas.; Argentina
dc.description.fil
Fil: Nieto, Luis Agustin. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias Fisicas. - Universidad Nacional de San Martin. Instituto de Ciencias Fisicas.; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina
dc.description.fil
Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Cincinnati; Estados Unidos
dc.description.fil
Fil: Bernardi, Guillermo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
dc.description.fil
Fil: Rodríguez, Luis M.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Fregenal, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
dc.description.fil
Fil: Saint Martin, María Laura Gisela. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina
dc.description.fil
Fil: Portu, Agustina Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Departamento de Radiobiología; Argentina
dc.journal.title
Plos One
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0293891
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0293891
Archivos asociados