Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multivariate analysis from SSR and morphological data in chickpea (Cicer arietinum L.) for breeding purposes

Pocovi, Mariana Inés; Sosa, Maximiliano MartinIcon ; Delgado, Romina PaolaIcon ; Castillo, Veronica; Collavino, Graciela; Carreras, Julia
Fecha de publicación: 03/2023
Editorial: Cambridge University Press
Revista: Plant Genetic Resources Newsletter
ISSN: 1479-2621
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

In order to enhance genetic potential of chickpea materials from the National University ofCórdoba Breeding Programme and Germplasm collection (Argentina), a study for a comprehensiveunderstanding of the amount and pattern of genetic variation within and betweengenotypes was carried out by applying a multivariate analysis form single simple repeats(SSR) and morphological data. Molecular data were also used to determine the discriminatingpower for genotype identification, and to find the optimal primer combination to ensureunambiguous identification. With the analysis of 15 SSR markers on 53 genotypes, a totalof 58 alleles were detected with individual values ranging from one to nine alleles perlocus. High values of discriminating power (Dj ⩾ 0.7, PIC ⩾ 0.7), and low values of confusionprobability (Cj ⩽ 0.23) were obtained for at least four evaluated markers. The combination ofTA113 + TA114 + H1B09 + TA106 primers was effective for discriminating the 53 chickpeagenotypes with a cumulative confusion probability value (Ck) of 9.60 × 10−4. Except forsome exceptions, individual chickpea genotypes within a cluster in the consensus tree weredefinitely more closely related with each other by the origin or pedigree. The results confirmedthat both multivariate data analysis methods, ordination and clustering, were complementary.In most genotypes, discriminant principal component analysis classification was consistentwith the original clusters defined by molecular data. Differences in results from molecularand morphological data indicate that they provide complementary and relevant informationfor establishing genetic relationships among chickpea materials and a better description andinterpretation of the available variability in the germplasm collection.
Palabras clave: CICER ARIETINUM , DAPC , DISCRIMINATING POWER , GENETICA VARIABILITY
Ver el registro completo
 
Archivos asociados
Tamaño: 1.213Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/222654
URL: https://www.cambridge.org/core/journals/plant-genetic-resources/article/abs/mult
DOI: http://dx.doi.org/10.1017/S1479262123000059
Colecciones
Articulos(CCT - SALTA-JUJUY)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SALTA-JUJUY
Citación
Pocovi, Mariana Inés; Sosa, Maximiliano Martin; Delgado, Romina Paola; Castillo, Veronica; Collavino, Graciela; et al.; Multivariate analysis from SSR and morphological data in chickpea (Cicer arietinum L.) for breeding purposes; Cambridge University Press; Plant Genetic Resources Newsletter; 20; 3-2023; 215-222
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES