Mostrar el registro sencillo del ítem
dc.contributor.author
Aquistapace, Franco
dc.contributor.author
Castillo Castro, Daniel
dc.contributor.author
González, Rafael I.
dc.contributor.author
Amigo, Nicolás
dc.contributor.author
García Vidable, Gonzalo Nahuel
dc.contributor.author
Tramontina Videla, Diego Ramiro
dc.contributor.author
Valencia, Felipe
dc.contributor.author
Bringa, Eduardo Marcial
dc.date.available
2024-01-05T14:24:44Z
dc.date.issued
2023-12
dc.identifier.citation
Aquistapace, Franco; Castillo Castro, Daniel; González, Rafael I.; Amigo, Nicolás; García Vidable, Gonzalo Nahuel; et al.; Plasticity in diamond nanoparticles: dislocations and amorphization during loading and dislocation multiplication during unloading; Springer; Journal of Materials Science; 12-2023; 1-23
dc.identifier.issn
0022-2461
dc.identifier.uri
http://hdl.handle.net/11336/222617
dc.description.abstract
This work focuses on the mechanical response of cubic-diamond nanoparticles of several sizes when subjected to a planar indenter. Three sequential stages were considered, i.e., loading, unloading, and reloading. In the large anisotropic strain regime, standard structure detectors stop identifying atoms as having diamond structures, affecting the ability to detect dislocations. A machine learning-assisted structure detector, MultiSOM, is able to detect a significantly larger number of crystalline diamond atoms and also identify much larger dislocation densities. MultiSOM also detects a distorted diamond phase and directional amorphization, similar to what has been observed for other covalent solids at high strain. After unloading, there is a large elastic recovery and significant amorphization remains. It is remarkable that dislocation density increases during unloading, unlike what happens for most materials, where there are large reductions due to dislocation reactions and surface sinks. This “anomalous” behavior is likely associated with low dislocation mobility in diamond, but also with a large number of junctions, which increases with dislocation density and reduces even further dislocation mobility. The unloaded state includes a dense dislocation network that withstands high-temperature annealing. Analysis of the vibrational density of states (VDOS) during recovery is consistent with significant recovery of the crystalline diamond phase. Reloading of the nanoparticles shows lower strength, without significant dislocation growth.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
diamond
dc.subject
nanoparticles
dc.subject
machine learning
dc.subject
dislocations
dc.subject
amorphization
dc.subject
plasticity
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Plasticity in diamond nanoparticles: dislocations and amorphization during loading and dislocation multiplication during unloading
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-04T14:56:31Z
dc.journal.pagination
1-23
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Aquistapace, Franco. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
dc.description.fil
Fil: Castillo Castro, Daniel. Universidad Mayor; Chile
dc.description.fil
Fil: González, Rafael I.. Universidad Mayor; Chile
dc.description.fil
Fil: Amigo, Nicolás. Universidad Tecnologica Metropolitana (utem);
dc.description.fil
Fil: García Vidable, Gonzalo Nahuel. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Mendoza; Argentina
dc.description.fil
Fil: Valencia, Felipe. Universidad Católica del Maule; Chile
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal of Materials Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10853-023-09223-7
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10853-023-09223-7
Archivos asociados