Mostrar el registro sencillo del ítem
dc.contributor.author
Tramontina Videla, Diego Ramiro
dc.contributor.author
Deluigi, Orlando Raul
dc.contributor.author
Pinzón, R.
dc.contributor.author
Rojas Nunez, J.
dc.contributor.author
Valencia, F. J.
dc.contributor.author
Pasianot, Roberto Cesar
dc.contributor.author
Baltazar, S. E.
dc.contributor.author
Gonzalez, R. I.
dc.contributor.author
Bringa, Eduardo Marcial
dc.date.available
2024-01-05T13:37:21Z
dc.date.issued
2023-08
dc.identifier.citation
Tramontina Videla, Diego Ramiro; Deluigi, Orlando Raul; Pinzón, R.; Rojas Nunez, J.; Valencia, F. J.; et al.; Probing radiation resistance in simulated metallic core–shell nanoparticles; Elsevier; Computational Materials Science; 227; 8-2023; 1-13
dc.identifier.issn
0927-0256
dc.identifier.uri
http://hdl.handle.net/11336/222596
dc.description.abstract
We present molecular dynamics (MD) simulations of radiation damage in Fe nanoparticles (NP) and bimetallic FeCu core–shell nanoparticles (CSNP). The CSNP includes a perfect body-centered cubic (bcc) Fe core coated with a face-centered cubic (fcc) Cu shell. Irradiation with Fe Primary Knock-on Atoms (PKA) with energies between 1 and 7 keV leads to point defects, without clustering beyond divacancies and very few slightly larger vacancy clusters, and without interstitial clusters, unlike what happens in bulk at the same PKA energies. The Fe-Cu interface and shell can act as a defect sink, absorbing radiation-induced damage and, therefore, the final number of defects in the Fe core is significantly lower than in the Fe NP. In addition, the Cu shell substantially diminishes the number of sputtered Fe atoms, acting as a barrier for recoil ejection. Structurally, the Cu shell responds to the stress generated by the collision cascade by creating and destroying stacking faults across the shell width, which could also accommodate further irradiation defects. We compare our MD results to Monte Carlo Binary Collision Approximation (BCA) simulations using the SRIM code, for the irradiation of an amorphous 3-layer thin film with a thickness equal to the CSNP diameter. BCA does not include defect recombination, so the number of Frenkel pairs is significantly higher than in MD, as expected. Sputtering yield (Y) is underestimated by BCA, which is also expected since the simulation is for a thin film at normal incidence. We also compare MD defect production to bulk predictions of the analytic Athermal Recombination Corrected Displacements Per Atom (arc-dpa) model. The number of vacancies in the Fe core is only slightly lower than arc-dpa predictions, but the number of interstitials is reduced by about one order of magnitude compared to vacancies, at 5 keV. According to the radiation resistance found for FeCu CSNP in our simulations, this class of nanomaterial could be suitable for developing new radiation-resistant coatings, nanostructured components, and shields for use in extreme environments, for instance, in nuclear energy and astrophysical applications.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CORE–SHELL
dc.subject
IRRADIATION
dc.subject
MOLECULAR DYNAMICS
dc.subject
NANOPARTICLES
dc.subject
RADIATION-DAMAGE
dc.subject.classification
Otras Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Física Atómica, Molecular y Química
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Probing radiation resistance in simulated metallic core–shell nanoparticles
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-03T12:32:09Z
dc.journal.volume
227
dc.journal.pagination
1-13
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina
dc.description.fil
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina
dc.description.fil
Fil: Pinzón, R.. Universidad Tecnologica de Panamá.; Panamá. Sistema Nacional de Investigación; Panamá. Centro de Estudios Multidisciplinarios de Ingeniería Ciencias y Tecnología; Panamá
dc.description.fil
Fil: Rojas Nunez, J.. Universidad de Santiago de Chile; Chile. Center for the Development of Nanoscience and Nanotechnology; Chile
dc.description.fil
Fil: Valencia, F. J.. Center For Development Of Nanoscience And Technology; Chile. Universidad Católica de Maule; Chile
dc.description.fil
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Energía Nuclear. Gerencia Materiales; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
dc.description.fil
Fil: Baltazar, S. E.. Universidad de Santiago de Chile; Chile. Center For Development Of Nanoscience And Technology; Chile
dc.description.fil
Fil: Gonzalez, R. I.. Center For Development Of Nanoscience And Nanotechnology; Chile. Universidad Mayor; Chile
dc.description.fil
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza; Argentina. Universidad Mayor; Chile
dc.journal.title
Computational Materials Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0927025623002987
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.commatsci.2023.112304
Archivos asociados