Mostrar el registro sencillo del ítem

dc.contributor.author
Mora Barzaga, Geraudys  
dc.contributor.author
Miranda, Enrique Nestor  
dc.contributor.author
Bringa, Eduardo Marcial  
dc.date.available
2024-01-05T10:52:21Z  
dc.date.issued
2023-11  
dc.identifier.citation
Mora Barzaga, Geraudys; Miranda, Enrique Nestor; Bringa, Eduardo Marcial; Do dislocations always decrease thermal conductivity?; Elsevier France-Editions Scientifiques Medicales Elsevier; International Journal Of Thermal Sciences; 193; 11-2023; 1-9  
dc.identifier.issn
1290-0729  
dc.identifier.uri
http://hdl.handle.net/11336/222493  
dc.description.abstract
Dislocations play a significant role in introducing disorder and distortion within an ideal bulk crystal lattice, resulting in the degradation of phonon thermal conductivity. In this study, we employ non-equilibrium Molecular Dynamics (NEMD) simulations to investigate the thermal conductivity of two spherical, single-crystal face-centered cubic (fcc) nanoparticles (NP) with a radius denoted as R. Our analysis encompasses pristine interfaces as well as interfaces containing dislocations, at the NP contact. Surprisingly, our findings reveal that the presence of dislocations leads to an increase in thermal conductivity, contrary to the expectations derived from bulk models and simulations. This counterintuitive behavior can be attributed to the expansion of the contact radius (ac) between the nanoparticles, facilitated by the dislocations. Notably, the thermal conductivity demonstrates a substantial reduction of approximately 90% compared to bulk values, and in all simulated cases, it scales effectively as a function of (ac/R). We explore various models to elucidate the impact of dislocations on thermal conductivity and ascertain that, under our specific conditions, only a marginal decrease would be anticipated. In alignment with these models, our results indicate that the introduction of localized dislocation arrays spanning nearly ten lattice parameters into a bulk sample elicits a thermal conductivity decrease of less than 10%. These findings provide compelling evidence that dislocations per se do not significantly affect thermal conductivity. Instead, the enhanced contact area generated by dislocations governs the heat flux within the simulated nanostructures. Notably, the analysis of thermal boundary conductance, which evaluates the conductivity across the interfaces, does exhibit a decrease in interfaces featuring dislocations. Considering that the dislocation content can be influenced by various synthesis conditions of the nanoparticles, these findings hold promising implications for tailoring the thermal conductivity of nanoparticle beds or coatings.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier France-Editions Scientifiques Medicales Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DISLOCATIONS  
dc.subject
INTERFACES  
dc.subject
MOLECULAR DYNAMICS  
dc.subject
THERMAL CONDUCTIVITY  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Do dislocations always decrease thermal conductivity?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-03T12:27:44Z  
dc.journal.volume
193  
dc.journal.pagination
1-9  
dc.journal.pais
Francia  
dc.description.fil
Fil: Mora Barzaga, Geraudys. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Miranda, Enrique Nestor. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.journal.title
International Journal Of Thermal Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijthermalsci.2023.108474