Artículo
Generalized discriminant analysis via kernel exponential families
Fecha de publicación:
12/2022
Editorial:
Elsevier
Revista:
Pattern Recognition
ISSN:
0031-3203
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper introduces a novel supervised dimension reduction method for classification and regression problems using reproducing kernel Hilbert spaces. The proposed approach takes advantage of the modeling power of kernel exponential families to extract nonlinear summary statistics of the data that are sufficient to preserve information about the target response. For the special case of finite dimensional exponential family distributions, the proposed method is shown to simplify the known solutions for sufficient dimension reduction. A connection with support vector machines is shown and exploited to obtain efficient estimation procedures. Experiments with simulated and real data illustrate the potential of the proposed approach.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Ibañez, Diego Isaías; Forzani, Liliana Maria; Tomassi, Diego Rodolfo; Generalized discriminant analysis via kernel exponential families; Elsevier; Pattern Recognition; 132; 12-2022; 1-10
Compartir
Altmétricas