Mostrar el registro sencillo del ítem
dc.contributor.author
Tatarin, Ana Silvia
dc.contributor.author
Aranguiz, Camila
dc.contributor.author
Sadañoski, Marcela Alejandra
dc.contributor.author
Polti, Marta Alejandra
dc.contributor.author
Fonseca, Maria Isabel
dc.date.available
2024-01-03T19:55:28Z
dc.date.issued
2023-12
dc.identifier.citation
Tatarin, Ana Silvia; Aranguiz, Camila; Sadañoski, Marcela Alejandra; Polti, Marta Alejandra; Fonseca, Maria Isabel; Fungal species originating from chromium contaminated soil for ecofriendly and biotechnological processes; Elsevier Science; Applied Soil Ecology; 12-2023; 1-12;105231
dc.identifier.issn
0929-1393
dc.identifier.uri
http://hdl.handle.net/11336/222348
dc.description.abstract
Chromium contamination through different anthropogenic activities has been of great concern in soil health due to its toxicity and persistence. Microbial originating from contaminated industrial soil, including chromium tolerant fungi, is a promising approach to adapt green technologies. The current study investigated chromium contaminated industrial soils to explore the potential of indigenous fungi to tolerate, remove and detoxify high Cr(VI) contaminated matrices, as well as, the employed mechanisms by the most promising strain. This study involves fungal isolation from a chromium contaminated soil, selection and identification using ITS1 and tef1 sequences of the most chromium tolerant fungal strain. Mycoremediation was assessed by Cr(VI) removal and detoxification employing Lactuca sativa and Artemia salina tests, whereas scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and chromate reductase activity were evaluated to understand the implicated mechanisms. Isolation of 12 distinct fungal strains was carried out classified into three genera: Trichoderma sp., Penicillium sp., and Aspergillus sp. The identified strain as Trichoderma koningiopsis LBM 253 demonstrated the highest tolerance in solid medium and also removed up of the metal in liquid media at an high initial Cr(VI) concentration of 200 mg L−1. Fungus showed the ability to bioaccumulate Cr(VI) and SEM and EDX analysis showed that the adsorbed chromium was sequestered in the fungal mycelium as a precipitate. Moreover, high titers of chromate reductase activity were detected, and changes were observed in the extracellular and intracellular activity. Ecotoxicity tests carried out using plant (L. sativa) and animal (A. salina) biomarkers showed that T. koningiopsis decreases Cr(VI) toxicity in liquid systems. The findings of this study provide strong evidence that T. koningiopsis LBM 253 originated from chromium-contaminated soil is a promising fungus to be applied in mycoremediation and ecofriendly processes, offering the capability to tolerate, remove, and detoxify high concentrations of Cr(VI) from liquid media supplemented with the metal.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHROMATE REDUCTASE
dc.subject
DETOXIFICATION
dc.subject
HEXAVALENT CHROMIUM
dc.subject
MYCOREMEDIATION
dc.subject
SOIL
dc.subject
TRICHODERMA KONINGIOPSIS LBM 253
dc.subject.classification
Biotecnología Medioambiental
dc.subject.classification
Biotecnología del Medio Ambiente
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Fungal species originating from chromium contaminated soil for ecofriendly and biotechnological processes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-03T15:30:00Z
dc.journal.pagination
1-12;105231
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Tatarin, Ana Silvia. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Aranguiz, Camila. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina
dc.description.fil
Fil: Sadañoski, Marcela Alejandra. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Polti, Marta Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Fonseca, Maria Isabel. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Departamento de Bioquímica Clínica. Laboratorio de Biotecnología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
dc.journal.title
Applied Soil Ecology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.apsoil.2023.105231
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0929139323004298
Archivos asociados