Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

MultiSOM: Multi-layer Self Organizing Maps for local structure identification in crystalline structures

Aquistapace, Franco; Amigo, Nicolás; Troncoso, Javier F.; Deluigi, Orlando RaulIcon ; Bringa, Eduardo MarcialIcon
Fecha de publicación: 08/2023
Editorial: Elsevier
Revista: Computational Materials Science
ISSN: 0927-0256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Identification of defects in crystalline structures is of vital importance when describing the plastic behavior of metals. Despite the increasing number of tools available in the literature, additional techniques are still required to classify different types of defects. Here we present a novel tool based on Multi-layer Self Organizing Maps (MultiSOM), which can be employed in the identification of vacancies, dislocations and free surfaces at the atomic scale. Three case-studies were analyzed and the performance of MultiSOM was compared to traditional tools, such as common neighbor analysis and polyhedral template matching, revealing that our algorithm is able to identify local structures while other methods are unable to. We demonstrate that excellent results can be obtained for identifying local structural patterns in solids through the MultiSOM framework when combining per-atom properties such as coordination numbers and centrosymmetry parameter; though alone, each property is insufficient. Overall, MultiSOM is an open-source software, that works under the Python programming language with user-selected features.
Palabras clave: DEFECT IDENTIFICATION , MACHINE LEARNING , MOLECULAR DYNAMICS , SELF-ORGANIZING MAPS , STRUCTURE IDENTIFICATION
Ver el registro completo
 
Archivos asociados
Tamaño: 4.081Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/222245
URL: https://linkinghub.elsevier.com/retrieve/pii/S0927025623002574
DOI: http://dx.doi.org/10.1016/j.commatsci.2023.112263
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Aquistapace, Franco; Amigo, Nicolás; Troncoso, Javier F.; Deluigi, Orlando Raul; Bringa, Eduardo Marcial; MultiSOM: Multi-layer Self Organizing Maps for local structure identification in crystalline structures; Elsevier; Computational Materials Science; 227; 8-2023; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES