Mostrar el registro sencillo del ítem

dc.contributor.author
Seeber, Richard  
dc.contributor.author
Haimovich, Hernan  
dc.date.available
2024-01-02T11:58:39Z  
dc.date.issued
2023-02  
dc.identifier.citation
Seeber, Richard; Haimovich, Hernan; Optimal robust exact differentiation via linear adaptive techniques; Pergamon-Elsevier Science Ltd; Automatica; 148; 2-2023; 1-13  
dc.identifier.issn
0005-1098  
dc.identifier.uri
http://hdl.handle.net/11336/221944  
dc.description.abstract
The problem of differentiating a function with bounded second derivative in the presence of bounded measurement noise is considered in both continuous-time and sampled-data settings. Fundamental performance limitations of causal differentiators, in terms of the smallest achievable worst-case differentiation error, are shown. A robust exact differentiator is then constructed via the adaptation of a single parameter of a linear differentiator. It is demonstrated that the resulting differentiator exhibits a combination of properties that outperforms existing continuous-time differentiators: it is robust with respect to noise, it instantaneously converges to the exact derivative in the absence of noise, and it attains the smallest possible—hence optimal—upper bound on its differentiation error under noisy measurements. For sample-based differentiators, the concept of quasi-exactness is introduced to classify differentiators that achieve the lowest possible worst-case error based on sampled measurements in the absence of noise. A straightforward sample-based implementation of the proposed linear adaptive continuous-time differentiator is shown to achieve quasi-exactness after a single sampling step as well as a theoretically optimal differentiation error bound that, in addition, converges to the continuous-time optimal one as the sampling period becomes arbitrarily small. A numerical simulation illustrates the presented formal results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DIFFERENTIATION  
dc.subject
DISCRETE-TIME IMPLEMENTATION  
dc.subject
OPTIMAL WORST-CASE ACCURACY  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Optimal robust exact differentiation via linear adaptive techniques  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-22T11:34:01Z  
dc.journal.volume
148  
dc.journal.pagination
1-13  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Seeber, Richard. University of Graz; Austria  
dc.description.fil
Fil: Haimovich, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.journal.title
Automatica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0005109822005908  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.automatica.2022.110725