Mostrar el registro sencillo del ítem

dc.contributor.author
Li, Chao  
dc.contributor.author
Zeng, Junhua  
dc.contributor.author
Li, Chunmei  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Zhao, Qibin  
dc.contributor.other
Lawrence, Neil  
dc.contributor.other
Krause, Andreas  
dc.date.available
2023-12-29T12:25:47Z  
dc.date.issued
2023  
dc.identifier.citation
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations; 40th International Conference on Machine Learning; Honolulu; Estados Unidos; 2023; 20384-20411  
dc.identifier.issn
2640-3498  
dc.identifier.uri
http://hdl.handle.net/11336/221893  
dc.description.abstract
Tensor network (TN) is a powerful framework in machine learning, but selecting a good TN model, known as TN structure search (TN-SS), is a challenging and computationally intensive task. The recent approach TNLS (Li et al., 2022) showed promising results for this task. However, its computational efficiency is still unaffordable, requiring too many evaluations of the objective function. We propose TnALE, a surprisingly simple algorithm that updates each structure-related variable alternately by local enumeration, greatly reducing the number of evaluations compared to TNLS. We theoretically investigate the descent steps for TNLS and TnALE, proving that both the algorithms can achieve linear convergence up to a constant if a sufficient reduction of the objective is reached in each neighborhood. We further compare the evaluation efficiency of TNLS and TnALE, revealing that Ω(2K) evaluations are typically required in TNLS for reaching the objective reduction, while ideally O(KR) evaluations are sufficient in TnALE, where K denotes the dimension of search space and R reflects the “low-rankness” of the neighborhood. Experimental results verify that TnALE can find practically good TN structures with vastly fewer evaluations than the state-of-the-art algorithms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MLR Press  
dc.relation
https://www.neventum.com/tradeshows/international-conference-machine-learning-icml  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Tensor Network  
dc.subject
Signal Processing  
dc.subject
Machine Learning  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2023-12-26T14:15:49Z  
dc.journal.volume
202  
dc.journal.pagination
20384-20411  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Li, Chao. Riken Aip; Japón  
dc.description.fil
Fil: Zeng, Junhua. Riken Aip; Japón. Guangdong University of Technology; China  
dc.description.fil
Fil: Li, Chunmei. Riken Aip; Japón. Harbin Engineering University; China  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Zhao, Qibin. Riken Aip; Japón  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://proceedings.mlr.press/v202/li23ar/li23ar.pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://proceedings.mlr.press/v202/  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
40th International Conference on Machine Learning  
dc.date.evento
2023-07-23  
dc.description.ciudadEvento
Honolulu  
dc.description.paisEvento
Estados Unidos  
dc.type.publicacion
Journal  
dc.description.institucionOrganizadora
International Council for Machinery Lubrication  
dc.source.revista
Proceedings of Machine Learning Research  
dc.date.eventoHasta
2023-07-29  
dc.type
Conferencia