Mostrar el registro sencillo del ítem
dc.contributor.author
Li, Chao
dc.contributor.author
Zeng, Junhua
dc.contributor.author
Li, Chunmei
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Zhao, Qibin
dc.contributor.other
Lawrence, Neil
dc.contributor.other
Krause, Andreas
dc.date.available
2023-12-29T12:25:47Z
dc.date.issued
2023
dc.identifier.citation
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations; 40th International Conference on Machine Learning; Honolulu; Estados Unidos; 2023; 20384-20411
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/11336/221893
dc.description.abstract
Tensor network (TN) is a powerful framework in machine learning, but selecting a good TN model, known as TN structure search (TN-SS), is a challenging and computationally intensive task. The recent approach TNLS (Li et al., 2022) showed promising results for this task. However, its computational efficiency is still unaffordable, requiring too many evaluations of the objective function. We propose TnALE, a surprisingly simple algorithm that updates each structure-related variable alternately by local enumeration, greatly reducing the number of evaluations compared to TNLS. We theoretically investigate the descent steps for TNLS and TnALE, proving that both the algorithms can achieve linear convergence up to a constant if a sufficient reduction of the objective is reached in each neighborhood. We further compare the evaluation efficiency of TNLS and TnALE, revealing that Ω(2K) evaluations are typically required in TNLS for reaching the objective reduction, while ideally O(KR) evaluations are sufficient in TnALE, where K denotes the dimension of search space and R reflects the “low-rankness” of the neighborhood. Experimental results verify that TnALE can find practically good TN structures with vastly fewer evaluations than the state-of-the-art algorithms.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MLR Press
dc.relation
https://www.neventum.com/tradeshows/international-conference-machine-learning-icml
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Tensor Network
dc.subject
Signal Processing
dc.subject
Machine Learning
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Alternating Local Enumeration (TnALE): solving tensor network structure search with fewer evaluations
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-12-26T14:15:49Z
dc.journal.volume
202
dc.journal.pagination
20384-20411
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Li, Chao. Riken Aip; Japón
dc.description.fil
Fil: Zeng, Junhua. Riken Aip; Japón. Guangdong University of Technology; China
dc.description.fil
Fil: Li, Chunmei. Riken Aip; Japón. Harbin Engineering University; China
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Zhao, Qibin. Riken Aip; Japón
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://proceedings.mlr.press/v202/li23ar/li23ar.pdf
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://proceedings.mlr.press/v202/
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
40th International Conference on Machine Learning
dc.date.evento
2023-07-23
dc.description.ciudadEvento
Honolulu
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
International Council for Machinery Lubrication
dc.source.revista
Proceedings of Machine Learning Research
dc.date.eventoHasta
2023-07-29
dc.type
Conferencia
Archivos asociados