Mostrar el registro sencillo del ítem

dc.contributor.author
Senra, Daniela  
dc.contributor.author
Guisoni, Nara Cristina  
dc.contributor.author
Diambra, Luis Anibal  
dc.date.available
2023-12-29T12:11:03Z  
dc.date.issued
2023-04  
dc.identifier.citation
Senra, Daniela; Guisoni, Nara Cristina; Diambra, Luis Anibal; Cell annotation using scRNA-seq data: A protein-protein interaction network approach; Elsevier; MethodsX; 10; 102179; 4-2023; 1-8  
dc.identifier.issn
2215-0161  
dc.identifier.uri
http://hdl.handle.net/11336/221884  
dc.description.abstract
Pathway analysis is an important step in the interpretation of single cell transcriptomic data, as it provides powerful information to detect which cellular processes are active in each individual cell. We have recently developed a protein-protein interaction network-based framework to quantify pluripotency associated pathways from scRNA-seq data. On this occasion, we extend this approach to quantify the activity of a pathway associated with any biological process, or even any list of genes. A systems-level characterization of pathway activities across multiple cell types provides a broadly applicable tool for the analysis of pathways in both healthy and disease conditions. Dysregulated cellular functions are a hallmark of a wide spectrum of human disorders, including cancer and autoimmune diseases. Here, we illustrate our method by analyzing various biological processes in healthy and cancer breast samples. Using this approach we found that tumor breast cells, even when they form a single group in the UMAP space, keep diverse biological programs active in a differentiated manner within the cluster. • We implement a protein-protein interaction network-based approach to quantify the activity of different biological processes. • The methodology can be used for cell annotation in scRNA-seq studies and is freely available as R package.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
BIOLOGICAL PROCESSES  
dc.subject
BREAST CANCER  
dc.subject
CELL ANNOTATION  
dc.subject
PROTEIN-PROTEIN INTERACTION NETWORKS  
dc.subject
SCRNA-SEQ  
dc.subject.classification
Biología Celular, Microbiología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Cell annotation using scRNA-seq data: A protein-protein interaction network approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-27T17:45:26Z  
dc.journal.volume
10  
dc.journal.number
102179  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Senra, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina  
dc.description.fil
Fil: Guisoni, Nara Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina  
dc.description.fil
Fil: Diambra, Luis Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina  
dc.journal.title
MethodsX  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2215016123001796  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.mex.2023.102179