Mostrar el registro sencillo del ítem
dc.contributor.author
Senra, Daniela
dc.contributor.author
Guisoni, Nara Cristina
dc.contributor.author
Diambra, Luis Anibal
dc.date.available
2023-12-29T12:11:03Z
dc.date.issued
2023-04
dc.identifier.citation
Senra, Daniela; Guisoni, Nara Cristina; Diambra, Luis Anibal; Cell annotation using scRNA-seq data: A protein-protein interaction network approach; Elsevier; MethodsX; 10; 102179; 4-2023; 1-8
dc.identifier.issn
2215-0161
dc.identifier.uri
http://hdl.handle.net/11336/221884
dc.description.abstract
Pathway analysis is an important step in the interpretation of single cell transcriptomic data, as it provides powerful information to detect which cellular processes are active in each individual cell. We have recently developed a protein-protein interaction network-based framework to quantify pluripotency associated pathways from scRNA-seq data. On this occasion, we extend this approach to quantify the activity of a pathway associated with any biological process, or even any list of genes. A systems-level characterization of pathway activities across multiple cell types provides a broadly applicable tool for the analysis of pathways in both healthy and disease conditions. Dysregulated cellular functions are a hallmark of a wide spectrum of human disorders, including cancer and autoimmune diseases. Here, we illustrate our method by analyzing various biological processes in healthy and cancer breast samples. Using this approach we found that tumor breast cells, even when they form a single group in the UMAP space, keep diverse biological programs active in a differentiated manner within the cluster. • We implement a protein-protein interaction network-based approach to quantify the activity of different biological processes. • The methodology can be used for cell annotation in scRNA-seq studies and is freely available as R package.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
BIOLOGICAL PROCESSES
dc.subject
BREAST CANCER
dc.subject
CELL ANNOTATION
dc.subject
PROTEIN-PROTEIN INTERACTION NETWORKS
dc.subject
SCRNA-SEQ
dc.subject.classification
Biología Celular, Microbiología
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Cell annotation using scRNA-seq data: A protein-protein interaction network approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-12-27T17:45:26Z
dc.journal.volume
10
dc.journal.number
102179
dc.journal.pagination
1-8
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Senra, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina
dc.description.fil
Fil: Guisoni, Nara Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina
dc.description.fil
Fil: Diambra, Luis Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Centro Regional de Estudios Genómicos; Argentina
dc.journal.title
MethodsX
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2215016123001796
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.mex.2023.102179
Archivos asociados