Artículo
About Convergence and Order of Convergence of Some Fractional Derivatives
Fecha de publicación:
10/2022
Editorial:
Natural Science Publishing
Revista:
Progress in Fractional Differentiation and Applications
ISSN:
2356-9336
e-ISSN:
2356-9344
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we obtain some convergence results for Riemann-Liouville, Caputo, and Caputo–Fabrizio fractional operators when the order of differentiation approaches one. We consider the errors given by D 1−α f − f ′ p for p=1 and p = ∞ and we prove that for bothm the Caputo and Caputo Fabrizio operators, the order of convergence is a positive real r ∈ (0,1). Finally, we compare the speed of convergence between Caputo and Caputo–Fabrizio operators obtaining that they are related by the Digamma function.
Palabras clave:
CAPUTO-FABRIZIO DERIVATIVE
,
CAPUTO DERIVATIVE
,
ORDER OF CONVERGENCE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Roscani, Sabrina Dina; Venturato, Lucas David; About Convergence and Order of Convergence of Some Fractional Derivatives; Natural Science Publishing; Progress in Fractional Differentiation and Applications; 8; 4; 10-2022; 495-508
Compartir
Altmétricas