Mostrar el registro sencillo del ítem

dc.contributor.author
Rodríguez Gonzalez, Carla  
dc.contributor.author
Guzmán, Claudio Daniel  
dc.contributor.author
Andreo, Verónica Carolina  
dc.date.available
2023-12-26T14:27:54Z  
dc.date.issued
2023-11  
dc.identifier.citation
Rodríguez Gonzalez, Carla; Guzmán, Claudio Daniel; Andreo, Verónica Carolina; Using VHR satellite imagery, OBIA and landscape metrics to improve mosquito surveillance in urban areas; Elsevier Science; Ecological Informatics; 77; 102221; 11-2023; 1-12  
dc.identifier.issn
1574-9541  
dc.identifier.uri
http://hdl.handle.net/11336/221413  
dc.description.abstract
Surveillance is critical to efficiently control and prevent mosquito-borne diseases such as Dengue. Surveillance relies on sampling the target region for arthropod vectors over time. However, in most cases the sampling framework is ad hoc and relies only on expert opinion. We sought to improve the efficiency of mosquito surveillance in Córdoba (Argentina) by designing a spatial sampling scheme within complex urban areas that would optimize ovitrap collections. We classified a very high resolution (VHR) satellite image following an object based (OBIA) approach and estimated several landscape metrics over which we applied a k-means clustering. The objective was to identify an optimal distribution for the ovitrap network characterizing the urban coverage of the city at three types of territorial units: neighbourhoods, census tracts and Thiessen polygons around health care facilities. We distributed 150 ovitraps throughout the city based on the identified environmental groups and compared results with the current strategy used by the Ministry of Health. Stratified ovitrap distributions for census tracts or Thiessen polygons performed best compared to the current strategy in terms of environmental variability covered, i.e., relevant environmental groups are either subsampled or oversampled in the current distribution. Because of the general availability of these environmental data sets and algorithms, the approach could be applied in most urban areas where vector borne disease control is challenging.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
AEDES AEGYPTI  
dc.subject
DENGUE FEVER  
dc.subject
LANDSCAPE METRICS  
dc.subject
REMOTE SENSING  
dc.subject
SPATIAL CLUSTERING  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Epidemiología  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Using VHR satellite imagery, OBIA and landscape metrics to improve mosquito surveillance in urban areas  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-22T11:31:15Z  
dc.journal.volume
77  
dc.journal.number
102221  
dc.journal.pagination
1-12  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Rodríguez Gonzalez, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina  
dc.description.fil
Fil: Guzmán, Claudio Daniel. Ministerio de Salud de la Nación; Argentina  
dc.description.fil
Fil: Andreo, Verónica Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Actividades Espaciales. Instituto de Altos Estudios Espaciales "Mario Gulich"; Argentina  
dc.journal.title
Ecological Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoinf.2023.102221  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1574954123002509