Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessing statistical downscaling in Argentina: Daily maximum and minimum temperatures

Balmaceda Huarte, RocioIcon ; Bettolli, Maria LauraIcon
Fecha de publicación: 12/2022
Editorial: John Wiley & Sons Ltd
Revista: International Journal of Climatology
ISSN: 0899-8418
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Investigación Climatológica

Resumen

Empirical statistical downscaling (ESD) under the perfect prognosis approach was carried out to simulate daily maximum (Tx) and minimum temperatures (Tn) in 101 meteorological stations over the different climatic regions of Argentina. To this end, three ESD families were evaluated: analogs (AN), generalized linear models (GLM) and artificial neural networks (ANN) considering a variety of predictor sets with multiple configurations driven by three different reanalyses (ERA, JRA, NCEP). ESD models were cross-validated using folds of nonconsecutive years (1979–2014) and then evaluated in a warmer set of years (independent warm period, 2015–2018) to assess their extrapolation capability. Depending on the aspect analysed, AN, GLM or ANN models were more/less skilful, but no method fulfilled all the features of both predicand variables. In this sense, the predictor set and model configuration were key factors. For each ESD method, the different predictor structures (point-wise, spatial-wise and combinations of them) introduced the main differences, regardless of the predictand variable, region and reanalysis choice. However, some specific results could be highlighted. ERA (NCEP)-driven ESD models were the most (least) skilful in representing Tx and Tn. In the case of Tn, models' skills considerably increased when humidity information was included in the predictor set. Our results showed that downscaling models were able to capture the general characteristics of Tx and Tn in all regions, with better performance in the latter variable. However, regions with complex topography (Argentinian Patagonia and the subtropical Andes) pose a further challenge for capturing the local variability of daily extreme temperatures. The performance of the ESD models in the atypical warm conditions was similar to the one during the cross-validated period, showing some extrapolation skill. The results of this work set a reference for future ESD developments and comparisons in Argentina.
Palabras clave: ANALOGS , ARTIFICIAL NEURAL NETWORKS , GENERALIZED LINEAR MODELS , MAXIMUM AND MINIMUM TEMPERATURE , PERFECT PROGNOSIS , REANALYSIS , REGIONAL CLIMATE DOWNSCALING , SOUTHERN SOUTH AMERICA
Ver el registro completo
 
Archivos asociados
Tamaño: 5.488Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/221406
DOI: http://dx.doi.org/10.1002/joc.7733
URL: https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.7733
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Balmaceda Huarte, Rocio; Bettolli, Maria Laura; Assessing statistical downscaling in Argentina: Daily maximum and minimum temperatures; John Wiley & Sons Ltd; International Journal of Climatology; 42; 16; 12-2022; 8423-8445
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES