Mostrar el registro sencillo del ítem
dc.contributor.author
Roa Díaz, Simón Andre
dc.contributor.author
Sirena, Martin
dc.contributor.author
Morán, Mauricio Javier
dc.date.available
2023-12-22T13:34:58Z
dc.date.issued
2023-01
dc.identifier.citation
Roa Díaz, Simón Andre; Sirena, Martin; Morán, Mauricio Javier; Stress-induced pseudoelasticity in freestanding Cu–Al–Ni thin film by AFM-assisted nanoindentation; Pergamon-Elsevier Science Ltd; Solid State Communications; 361; 1-2023; 1-5
dc.identifier.issn
0038-1098
dc.identifier.uri
http://hdl.handle.net/11336/221258
dc.description.abstract
Freestanding thin films of Cu–Al–Ni shape memory alloys (SMAs) have attracted interests in recent years for the development of next generation micro-scaled sensors and actuators in MEMS. Thin films’ capacity to recover stress-induced strain is critical to assess their potential for applications in these technologies. In this work, we report for the first time a quantitative study of this capacity in a freestanding Cu–Al–Ni thin film by Atomic Force Microscopy (AFM)-assisted nanoindentation. Stress-induced pseudoelastic (or superelastic) effects were successfully observed by this technique for relatively high strains up to a relative indentation depth of 30% concerning the film thickness. This effect highlights a clear shape memory effect, suggesting a sample's high mechanical performance for potential applications in the design of micro actuators for MEMS technologies. Results enable to set new perspectives of the use of this technique as an efficient methodology for future study of pseudoelasticity in micro/nanostructured SMAs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ATOMIC FORCE MICROSCOPY
dc.subject
DEPTH-SENSING NANOINDENTATION
dc.subject
PSEUDOELASTICITY
dc.subject
SHAPE MEMORY ALLOYS
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Stress-induced pseudoelasticity in freestanding Cu–Al–Ni thin film by AFM-assisted nanoindentation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-12-22T11:33:07Z
dc.journal.volume
361
dc.journal.pagination
1-5
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Roa Díaz, Simón Andre. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
dc.description.fil
Fil: Sirena, Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
dc.description.fil
Fil: Morán, Mauricio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Solid State Communications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S003810982300008X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ssc.2023.115071
Archivos asociados