Mostrar el registro sencillo del ítem

dc.contributor.author
Roa Díaz, Simón Andre  
dc.contributor.author
Sirena, Martin  
dc.contributor.author
Morán, Mauricio Javier  
dc.date.available
2023-12-22T13:34:58Z  
dc.date.issued
2023-01  
dc.identifier.citation
Roa Díaz, Simón Andre; Sirena, Martin; Morán, Mauricio Javier; Stress-induced pseudoelasticity in freestanding Cu–Al–Ni thin film by AFM-assisted nanoindentation; Pergamon-Elsevier Science Ltd; Solid State Communications; 361; 1-2023; 1-5  
dc.identifier.issn
0038-1098  
dc.identifier.uri
http://hdl.handle.net/11336/221258  
dc.description.abstract
Freestanding thin films of Cu–Al–Ni shape memory alloys (SMAs) have attracted interests in recent years for the development of next generation micro-scaled sensors and actuators in MEMS. Thin films’ capacity to recover stress-induced strain is critical to assess their potential for applications in these technologies. In this work, we report for the first time a quantitative study of this capacity in a freestanding Cu–Al–Ni thin film by Atomic Force Microscopy (AFM)-assisted nanoindentation. Stress-induced pseudoelastic (or superelastic) effects were successfully observed by this technique for relatively high strains up to a relative indentation depth of 30% concerning the film thickness. This effect highlights a clear shape memory effect, suggesting a sample's high mechanical performance for potential applications in the design of micro actuators for MEMS technologies. Results enable to set new perspectives of the use of this technique as an efficient methodology for future study of pseudoelasticity in micro/nanostructured SMAs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ATOMIC FORCE MICROSCOPY  
dc.subject
DEPTH-SENSING NANOINDENTATION  
dc.subject
PSEUDOELASTICITY  
dc.subject
SHAPE MEMORY ALLOYS  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Stress-induced pseudoelasticity in freestanding Cu–Al–Ni thin film by AFM-assisted nanoindentation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-22T11:33:07Z  
dc.journal.volume
361  
dc.journal.pagination
1-5  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Roa Díaz, Simón Andre. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina  
dc.description.fil
Fil: Sirena, Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina  
dc.description.fil
Fil: Morán, Mauricio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Solid State Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S003810982300008X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ssc.2023.115071