Artículo
Best Simultaneous Monotone Approximants in Orlicz Spaces
Fecha de publicación:
01/2013
Editorial:
Taylor & Francis
Revista:
Numerical Functional Analysis And Optimization
ISSN:
0163-0563
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let f = (f1, , fm ), where fj belongs to the Orlicz space [0, 1], and let w = (w1, , wm ) be an m-tuple of m positive weights. If ⊂ [0, 1] is the class of nondecreasing functions, we denote by ,w(f, ) the set of best simultaneous monotone approximants to f, that is, all the elements g ∈ minimizing m j=1 1 0 (|fj − g |)wj, where is a convex function, (t) > 0 for t > 0, and (0) = 0. In this work, we show an explicit formula to calculate the maximum and minimum elements in ,w(f, ). In addition, we study the continuity of the best simultaneous monotone approximants.
Palabras clave:
Simultaneous Approximation
,
Monotone Approximation
,
Orlicz Spaces
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Levis, Fabián Eduardo; Marano, M.; Best Simultaneous Monotone Approximants in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 34; 1; 1-2013; 16-35
Compartir
Altmétricas