Mostrar el registro sencillo del ítem

dc.contributor.author
Adrover, Jorge Gabriel  
dc.contributor.author
Donato, Stella Maris  
dc.date.available
2023-12-21T13:52:41Z  
dc.date.issued
2023-02  
dc.identifier.citation
Adrover, Jorge Gabriel; Donato, Stella Maris; Aspects of robust canonical correlation analysis, principal components and association; Springer; Test; 32; 2; 2-2023; 623-650  
dc.identifier.issn
1133-0686  
dc.identifier.uri
http://hdl.handle.net/11336/221092  
dc.description.abstract
Principal component analysis (PCA) and canonical correlation analysis (CCA) are dimension-reduction techniques in which either a random vector is well approximated in a lower dimensional subspace or two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them. In both techniques, the closeness between the higher dimensional vector and the lower representations is under concern, measuring the closeness through a robust function. Robust SM-estimation has been treated in the context of PCA and CCA showing an outstanding performance under casewise contamination, which encourages the study of asymptotic properties. We analyze consistency and asymptotic normality for the SM-canonical vectors. As a by-product of the CCA derivations, the asymptotics for PCA can also be obtained. A classical measure of robustness as the influence function is analyzed, showing the usual performance of S-estimation in different statistical models. The general ideas behind SM-estimation in either PCA or CCA are specially tailored to the context of association, rendering robust measures of association between random variables. By these means, a robust correlation measure is derived and the connection with the association measure provided by S-estimation for bivariate scatter is analyzed. On the other hand, we also propose a second robust correlation measure which is reminiscent of depth-based procedures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CANONICAL CORRELATION ANALYSIS  
dc.subject
M-SCALES  
dc.subject
ROBUST ASSOCIATION  
dc.subject
S-ESTIMATION  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Aspects of robust canonical correlation analysis, principal components and association  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-19T12:30:42Z  
dc.journal.volume
32  
dc.journal.number
2  
dc.journal.pagination
623-650  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Adrover, Jorge Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Donato, Stella Maris. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Test  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11749-023-00846-1