Mostrar el registro sencillo del ítem

dc.contributor.author
Hojamberdiev, Mirabbos  
dc.contributor.author
Larralde, Ana Laura  
dc.contributor.author
Vargas Balda, Ronald Eduardo  
dc.contributor.author
Madriz Ruiz, Lorean Mercedes  
dc.contributor.author
Yubuta, Kunio  
dc.contributor.author
Sannegowda, Lokesh Koodlur  
dc.contributor.author
Sadok, Ilona  
dc.contributor.author
Krzyszczak Turczyn, Agnieszka  
dc.contributor.author
Oleszczuk, Patryk  
dc.contributor.author
Czech, Bożena  
dc.date.available
2023-12-20T13:01:21Z  
dc.date.issued
2023-09  
dc.identifier.citation
Hojamberdiev, Mirabbos; Larralde, Ana Laura; Vargas Balda, Ronald Eduardo; Madriz Ruiz, Lorean Mercedes; Yubuta, Kunio; et al.; Unlocking the effect of Zn2+ on crystal structure, optical properties, and photocatalytic degradation of perfluoroalkyl substances (PFAS) of Bi2WO6; Royal Society of Chemistry; Environmental Science: Water Research and Technology; 9; 11; 9-2023; 2866-2879  
dc.identifier.issn
2053-1400  
dc.identifier.uri
http://hdl.handle.net/11336/220880  
dc.description.abstract
Bismuth tungstate (Bi2WO6) with a layered structure and visible light response exhibits excellent photocatalytic activity. To enhance its photocatalytic activity for the degradation of perfluoroalkyl substances (PFAS), Zn2+ is partially substituted for Bi3+ in the Bi2WO6 lattice in this study. Particularly, the effect of Zn2+ content (0-22.5 at%) on the crystal structure, optical property, and photocatalytic activity for the photodegradation of PFAS of Bi2WO6 is investigated. According to the Le Bail fits, the unit-cell volume is slightly reduced from 487.7 Å3 to 480.8 Å3 by the partial substitution of smaller Zn2+ (0.74 Å for CN = 6) for larger Bi3+ (1.03 Å for CN = 6) in the Bi2WO6 crystal lattice, and the solubility of Zn2+ in the Bi2WO6 lattice is found to be below 17.5 at%. The partial substitution of Zn2+ influences the self-aggregation of nanoparticles, Ostwald ripening, and self-organization of nanoplates, resulting in different morphologies. Although the optical bandgap energy of Bi2WO6 is not significantly altered upon the partial substitution of Zn2+, the conduction and valence bands simultaneously shift upward. Among the Bi2−xZnxWO6+δ photocatalysts, 2.5 at% Zn2+-substituted Bi2WO6 exhibits larger water oxidation photocurrent density (0.316 mA cm−2 at 1.23 VRHE) and the highest photocatalytic activity for the photodegradation of PFHxA (k1 = 0.012 min−1). The trapping experiments confirm that the photo-excited holes (h+) and superoxide radicals (O2˙−) are the major reactive species involved in the photodegradation of PFHxA. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) reveals that decarboxylation and defluorination are the main possible routes for the photodegradation of PFHxA over Bi2−xZnxWO6+δ photocatalysts. Our findings suggest that the partial Zn2+-to-Bi2+ substitution can enhance the photocatalytic activity of Bi2WO6 for the degradation of PFAS.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BI2WO6  
dc.subject
PFAS  
dc.subject
ZINC  
dc.subject
WATER PURIFICATION  
dc.subject
PHOTOCALAYSIS  
dc.subject
CRYSTAL STRUCTURE  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Unlocking the effect of Zn2+ on crystal structure, optical properties, and photocatalytic degradation of perfluoroalkyl substances (PFAS) of Bi2WO6  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-19T12:16:33Z  
dc.identifier.eissn
2053-1419  
dc.journal.volume
9  
dc.journal.number
11  
dc.journal.pagination
2866-2879  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Hojamberdiev, Mirabbos. Technishe Universitat Berlin; Alemania  
dc.description.fil
Fil: Larralde, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnologia Industrial. Gerencia Operativa de Desarrollo Tecnologico E Innovacion. Sub Gerencia Operativa de Energia y Movilidad.; Argentina  
dc.description.fil
Fil: Vargas Balda, Ronald Eduardo. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina  
dc.description.fil
Fil: Madriz Ruiz, Lorean Mercedes. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina  
dc.description.fil
Fil: Yubuta, Kunio. Kyushu University; Japón  
dc.description.fil
Fil: Sannegowda, Lokesh Koodlur. Vijayanagara Sri Krishnadevaraya University; India  
dc.description.fil
Fil: Sadok, Ilona. Medical University Of Lublin (medical University Of Lublin);  
dc.description.fil
Fil: Krzyszczak Turczyn, Agnieszka. Medical University Of Lublin (medical University Of Lublin); . Maria Curie-Skłodowska University in Lublin; Polonia  
dc.description.fil
Fil: Oleszczuk, Patryk. Medical University Of Lublin (medical University Of Lublin); . Maria Curie-Skłodowska University in Lublin; Polonia  
dc.description.fil
Fil: Czech, Bożena. Medical University Of Lublin (medical University Of Lublin); . Maria Curie-Skłodowska University in Lublin; Polonia  
dc.journal.title
Environmental Science: Water Research and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2023/EW/D3EW00430A  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/D3EW00430A