Mostrar el registro sencillo del ítem
dc.contributor.author
Casaretto, Gimena

dc.contributor.author
Dillon, María Eugenia

dc.contributor.author
García Skabar, Yanina
dc.contributor.author
Ruiz, Juan Jose

dc.contributor.author
Sacco, Maximiliano Antonio

dc.date.available
2023-12-19T11:30:03Z
dc.date.issued
2023-11
dc.identifier.citation
Casaretto, Gimena; Dillon, María Eugenia; García Skabar, Yanina; Ruiz, Juan Jose; Sacco, Maximiliano Antonio; Ensemble Forecast Sensitivity to Observations Impact (EFSOI) applied to a regional data assimilation system over south-eastern South America; Elsevier Science Inc.; Atmospheric Research; 295; 11-2023; 1-14
dc.identifier.issn
0169-8095
dc.identifier.uri
http://hdl.handle.net/11336/220720
dc.description.abstract
Observations that are assimilated into numerical weather prediction systems are conformed by numerous data sets and their impact should be objectively evaluated. This can be efficiently achieved by the Forecast Sensitivity to Observation Impact (FSOI) methodology. In this study we explore the application of the ensemble formulation of FSOI (EFSOI) in a regional data assimilation system over south-eastern South America and evaluate the observations that result beneficial or detrimental to the forecast. In this paper we focus on the impact of two types of surface weather stations: human-operated conventional surface weather station networks from the National Meteorological Service and non-conventional automatic surface weather stations from different public and private networks (CSWS and NSWS respectively). To achieve this, the Weather Research and Forecasting model coupled with the Local Ensemble Transform Kalman Filter is used with 20 members. The experiment was carried out during 30 days of the intensive observing period of the RELAMPAGO-CACTI (Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations-Clouds, Aerosols, and Complex Terrain Interaction) field campaign that was conducted during the 2018–2019 austral warm season in the center of Argentina. 20 km resolution analyses were obtained every 6-h, assimilating data from soundings, aircrafts, GOES derived motion winds, AIRS retrievals, CSWS and NSWS. It is shown that, considering the entire period, all the observation sources had a positive impact on the 6-h forecasts. However, when each variable is analyzed individually, surface pressure observations from both CSWS and NSWS show on average a negative impact. Two data denial experiments were carried out in order to support EFSOI results. This paper is the first approximation to quantify the impact of different observation sources and observed variables at a regional scale over south-eastern South America, a data sparse region where unconventional networks can help close large geographical data gaps. The results of this work help identify observation data sources detrimental for the data assimilation system, suggesting data selection criteria to improve the regional forecast accuracy.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc.

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DATA ASSIMILATION
dc.subject
ENSEMBLE
dc.subject
NUMERICAL WEATHER PREDICTION SYSTEMS
dc.subject
OBSERVATION IMPACT
dc.subject.classification
Meteorología y Ciencias Atmosféricas

dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Ensemble Forecast Sensitivity to Observations Impact (EFSOI) applied to a regional data assimilation system over south-eastern South America
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-12-15T14:03:25Z
dc.journal.volume
295
dc.journal.pagination
1-14
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Casaretto, Gimena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
dc.description.fil
Fil: Dillon, María Eugenia. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: García Skabar, Yanina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina
dc.description.fil
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
dc.description.fil
Fil: Sacco, Maximiliano Antonio. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; Argentina
dc.journal.title
Atmospheric Research

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0169809523003939
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.atmosres.2023.106996
Archivos asociados