Mostrar el registro sencillo del ítem
dc.contributor.author
Garcia Eijo, Pedro Manuel
dc.contributor.author
Duriez, Thomas Pierre Cornil
dc.contributor.author
Cabaleiro, Juan Martin
dc.contributor.author
Artana, Guillermo Osvaldo
dc.date.available
2023-12-18T13:53:49Z
dc.date.issued
2022-11
dc.identifier.citation
Garcia Eijo, Pedro Manuel; Duriez, Thomas Pierre Cornil; Cabaleiro, Juan Martin; Artana, Guillermo Osvaldo; A machine learning-based framework to design capillary-driven networks; Royal Society of Chemistry; Lab On A Chip; 22; 24; 11-2022; 4860-4870
dc.identifier.issn
1473-0197
dc.identifier.uri
http://hdl.handle.net/11336/220589
dc.description.abstract
We present a novel approach for the design of capillary-driven microfluidic networks using a machine learning genetic algorithm (ML-GA). This strategy relies on a user-friendly 1D numerical tool specifically developed to generate the necessary data to train the ML-GA. This 1D model was validated using analytical results issued from a Y-shaped capillary network and experimental data. For a given microfluidic network, we defined the objective of the ML-GA to obtain the set of geometric parameters that produces the closest matching results against two prescribed curves of delivered volume against time. We performed more than 20 generations of 10 000 simulations to train the ML-GA and achieved the optimal solution of the inverse design problem. The optimisation took less than 6 hours, and the results were successfully validated using experimental data. This work establishes the utility of the presented method for the fast and reliable design of complex capillary-driven devices, enabling users to optimise their designs via an easy-to-use 1D numerical tool and machine learning technique.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Royal Society of Chemistry
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Microfluídica
dc.subject
Capilaridad
dc.subject
Redes capilares
dc.subject
Machine Learning
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A machine learning-based framework to design capillary-driven networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-12-18T12:06:49Z
dc.journal.volume
22
dc.journal.number
24
dc.journal.pagination
4860-4870
dc.journal.pais
Reino Unido
dc.journal.ciudad
Cambridge
dc.description.fil
Fil: Garcia Eijo, Pedro Manuel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina
dc.description.fil
Fil: Duriez, Thomas Pierre Cornil. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Cabaleiro, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina
dc.description.fil
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Lab On A Chip
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2022/LC/D2LC00843B
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1039/D2LC00843B
Archivos asociados