Mostrar el registro sencillo del ítem

dc.contributor.author
Garcia Eijo, Pedro Manuel  
dc.contributor.author
Duriez, Thomas Pierre Cornil  
dc.contributor.author
Cabaleiro, Juan Martin  
dc.contributor.author
Artana, Guillermo Osvaldo  
dc.date.available
2023-12-18T13:53:49Z  
dc.date.issued
2022-11  
dc.identifier.citation
Garcia Eijo, Pedro Manuel; Duriez, Thomas Pierre Cornil; Cabaleiro, Juan Martin; Artana, Guillermo Osvaldo; A machine learning-based framework to design capillary-driven networks; Royal Society of Chemistry; Lab On A Chip; 22; 24; 11-2022; 4860-4870  
dc.identifier.issn
1473-0197  
dc.identifier.uri
http://hdl.handle.net/11336/220589  
dc.description.abstract
We present a novel approach for the design of capillary-driven microfluidic networks using a machine learning genetic algorithm (ML-GA). This strategy relies on a user-friendly 1D numerical tool specifically developed to generate the necessary data to train the ML-GA. This 1D model was validated using analytical results issued from a Y-shaped capillary network and experimental data. For a given microfluidic network, we defined the objective of the ML-GA to obtain the set of geometric parameters that produces the closest matching results against two prescribed curves of delivered volume against time. We performed more than 20 generations of 10 000 simulations to train the ML-GA and achieved the optimal solution of the inverse design problem. The optimisation took less than 6 hours, and the results were successfully validated using experimental data. This work establishes the utility of the presented method for the fast and reliable design of complex capillary-driven devices, enabling users to optimise their designs via an easy-to-use 1D numerical tool and machine learning technique.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Microfluídica  
dc.subject
Capilaridad  
dc.subject
Redes capilares  
dc.subject
Machine Learning  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A machine learning-based framework to design capillary-driven networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-18T12:06:49Z  
dc.journal.volume
22  
dc.journal.number
24  
dc.journal.pagination
4860-4870  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Garcia Eijo, Pedro Manuel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina  
dc.description.fil
Fil: Duriez, Thomas Pierre Cornil. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Cabaleiro, Juan Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina  
dc.description.fil
Fil: Artana, Guillermo Osvaldo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Mecánica. Laboratorio de Fluidodinámica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Lab On A Chip  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/Content/ArticleLanding/2022/LC/D2LC00843B  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1039/D2LC00843B