Artículo
About the convergence of a family of initial boundary value problems for a fractional diffusion equation of robin type
Fecha de publicación:
11/2022
Editorial:
Elsevier Science Inc.
Revista:
Applied Mathematics and Computation
ISSN:
0096-3003
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider a family of initial boundary value problems governed by a fractional diffusion equation with Caputo derivative in time, where the parameter is the Newton heat transfer coefficient linked to the Robin condition on the boundary. For each problem we prove existence and uniqueness of solution by a Fourier approach. This will enable us to also prove the convergence of the family of solutions to the solution of the limit problem, which is obtained by replacing the Robin boundary condition with a Dirichlet boundary condition.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Cardoso, Isolda Eugenia; Roscani, Sabrina Dina; Tarzia, Domingo Alberto; About the convergence of a family of initial boundary value problems for a fractional diffusion equation of robin type; Elsevier Science Inc.; Applied Mathematics and Computation; 433; 11-2022; 1-15
Compartir
Altmétricas