Mostrar el registro sencillo del ítem

dc.contributor.author
Kappes, Mariano Alberto  
dc.contributor.author
Perez, Teresa E.  
dc.date.available
2023-12-14T13:17:09Z  
dc.date.issued
2023-06  
dc.identifier.citation
Kappes, Mariano Alberto; Perez, Teresa E.; Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective; Elsevier; Journal of Pipeline Science and Engineering; 2023; 6-2023; 1-16  
dc.identifier.issn
2667-1433  
dc.identifier.uri
http://hdl.handle.net/11336/220333  
dc.description.abstract
Blending hydrogen in existing natural gas pipelines compromises steel integrity because it increases fatigue crack growth, promotes subcritical cracking and decreases fracture toughness. In this regard, several laboratories reported that the fracture toughness measured in a hydrogen containing gaseous atmosphere, KIH, can be 50% or less than KIC, the fracture toughness measured in air. From a pipeline integrity perspective, fracture mechanics predicts that injecting hydrogen in a natural gas pipeline decreases the failure pressure and the size of the critical flaw at a given pressure level. For a pipeline with a given flaw size, as shown in this work, the effect of hydrogen embrittlement (HE) in the predicted failure pressure is largest when failure occurs by brittle fracture. The HE effect on failure pressure diminishes with a decreasing crack size or increasing fracture toughness. The safety margin after a successful hydrostatic test is reduced and therefore the time between hydrotests should be decreased. In this work, all those effects were quantified using a crack assessment methodology (level 2, API 579-ASME FFS) considering literature values for KIH and KIC reported for an API 5L X52 pipeline steel. To characterize different scenarios, various crack sizes were assumed, including a small crack with a size close to the detection limit of current in-line inspection techniques and a larger crack that represents the largest crack size that could survive a hydrotest to 100% of the steel specified minimum yield stress. The implications of a smaller failure pressure and smaller critical crack size on pipeline integrity are discussed in this paper.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PIPELINE  
dc.subject
FRACTURE TOUGHNESS  
dc.subject
HYDROGEN EMBRITTLEMENT  
dc.subject
BLENDING  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Blending hydrogen in existing natural gas pipelines: integrity consequences from a fitness for service perspective  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-12T15:45:43Z  
dc.journal.volume
2023  
dc.journal.pagination
1-16  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Kappes, Mariano Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina  
dc.description.fil
Fil: Perez, Teresa E.. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina  
dc.journal.title
Journal of Pipeline Science and Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2667143323000331  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jpse.2023.100141