Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Damage identification using convolutional neural networks from instantaneous displacement measurements via image processing

Resende, Lucas; Finotti, Rafaelle; Barbosa, Flávio; Garrido, Carlos HernánIcon ; Cury, Alexandre; Domizio, Martin NorbertoIcon
Fecha de publicación: 08/2023
Editorial: Sage Publications Ltd
Revista: Structural Health Monitoring-an International Journal
ISSN: 1475-9217
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones; Ingeniería Estructural; Mecánica Aplicada

Resumen

This work investigates the effectiveness of using convolutional neural networks (CNNs) and instantaneous displacement measurements for damage identification in beams. The study involves subjecting laboratory beams to eight distinct damage scenarios and capturing the vertical positions of 60 points along the beam length during free-vibration tests using a high-speed camera. The data obtained was subsequently used to train a CNN in a supervised manner to estimate the level of damage at each point. Results showed that the CNN models were able to correctly localize and quantify the damage levels when trained on data from all damage scenarios. The soundness of the proposed methodology was demonstrated in a robustness assessment, where all eight damage scenarios were correctly identified even when two of them were excluded from the training dataset.
Palabras clave: CONVOLUTIONAL NEURAL NETWORK , DAMAGE IDENTIFICATION , FREE VIBRATION , HIGH-SPEED CAMERA , INSTANTANEOUS DISPLACEMENT , PHOTOGRAMMETRY
Ver el registro completo
 
Archivos asociados
Tamaño: 4.628Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/220228
URL: https://journals.sagepub.com/doi/10.1177/14759217231193102
DOI: http://dx.doi.org/10.1177/14759217231193102
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Resende, Lucas; Finotti, Rafaelle; Barbosa, Flávio; Garrido, Carlos Hernán; Cury, Alexandre; et al.; Damage identification using convolutional neural networks from instantaneous displacement measurements via image processing; Sage Publications Ltd; Structural Health Monitoring-an International Journal; 8-2023; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES