Mostrar el registro sencillo del ítem

dc.contributor.author
Jarne, Cecilia Gisele  
dc.contributor.author
Caruso, Mariano  
dc.date.available
2023-12-13T17:10:24Z  
dc.date.issued
2023-04  
dc.identifier.citation
Jarne, Cecilia Gisele; Caruso, Mariano; Effect in the spectra of eigenvalues and dynamics of RNNs trained with excitatory–inhibitory constraint; Springer; Cognitive Neurodynamics; 4-2023; 1-13  
dc.identifier.issn
1871-4080  
dc.identifier.uri
http://hdl.handle.net/11336/220210  
dc.description.abstract
In order to comprehend and enhance models that describes various brain regions it is important to study the dynamics of trained recurrent neural networks. Including Dale’s law in such models usually presents several challenges. However, this is an important aspect that allows computational models to better capture the characteristics of the brain. Here we present a framework to train networks using such constraint. Then we have used it to train them in simple decision making tasks. We characterized the eigenvalue distributions of the recurrent weight matrices of such networks. Interestingly, we discovered that the non-dominant eigenvalues of the recurrent weight matrix are distributed in a circle with a radius less than 1 for those whose initial condition before training was random normal and in a ring for those whose initial condition was random orthogonal. In both cases, the radius does not depend on the fraction of excitatory and inhibitory units nor the size of the network. Diminution of the radius, compared to networks trained without the constraint, has implications on the activity and dynamics that we discussed here.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DALE’S LAW  
dc.subject
DYNAMICS  
dc.subject
EIGENVALUE DISTRIBUTION  
dc.subject
RECURRENT NEURAL NETWORKS  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Effect in the spectra of eigenvalues and dynamics of RNNs trained with excitatory–inhibitory constraint  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-12T15:48:20Z  
dc.journal.pagination
1-13  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Jarne, Cecilia Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina  
dc.description.fil
Fil: Caruso, Mariano. Universidad de la Rioja; España  
dc.journal.title
Cognitive Neurodynamics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11571-023-09956-w  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11571-023-09956-w