Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Robust Assessment of EEG Connectivity Patterns in Mild Cognitive Impairment and Alzheimer's Disease

Clark, Ruaridh A.; Smith, Keith; Escudero, Javier; Ibañez, Agustin MarianoIcon ; Parra, Mario A.
Fecha de publicación: 07/2022
Editorial: Frontiers Media
Revista: Frontiers in Neuroimaging
ISSN: 2813-1193
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Neurociencias

Resumen

The prevalence of dementia, including Alzheimer’s disease (AD), is on the rise globallywith screening and intervention of particular importance and benefit to those with limitedaccess to healthcare. Electroencephalogram (EEG) is an inexpensive, scalable, andportable brain imaging technology that could deliver AD screening to those without localtertiary healthcare infrastructure. We study EEG recordings of subjects with sporadicmild cognitive impairment (MCI) and prodromal familial, early-onset, AD for the sameworking memory tasks using high- and low-density EEG, respectively. A challenge indetecting electrophysiological changes from EEG recordings is that noise and volumeconduction effects are common and disruptive. It is known that the imaginary part ofcoherency (iCOH) can generate functional connectivity networks that mitigate againstvolume conduction, while also erasing true instantaneous activity (zero or π-phase).We aim to expose topological differences in these iCOH connectivity networks using aglobal network measure, eigenvector alignment (EA), shown to be robust to networkalterations that emulate the erasure of connectivities by iCOH. Alignments assessedby EA capture the relationship between a pair of EEG channels from the similarity oftheir connectivity patterns. Significant alignments—from comparison with random nullmodels—are seen to be consistent across frequency ranges (delta, theta, alpha, andbeta) for the working memory tasks, where consistency of iCOH connectivities is alsonoted. For high-density EEG recordings, stark differences in the control and sporadicMCI results are observed with the control group demonstrating far more consistentalignments. Differences between the control and pre-dementia groupings are detectedfor significant correlation and iCOH connectivities, but only EA suggests a notabledifference in network topology when comparing between subjects with sporadicMCI and prodromal familial AD. The consistency of alignments, across frequency ranges, providesa measure of confidence in EA’s detection of topological structure, an important aspectthat marks this approach as a promising direction for developing a reliable test for earlyonset AD.
Palabras clave: EEG , COHERENCY , NETWORK TOPOLOGICAL ANALYSIS , EIGENVECTOR,
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.925Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/220146
URL: https://www.frontiersin.org/articles/10.3389/fnimg.2022.924811/full
DOI: http://dx.doi.org/10.3389/fnimg.2022.924811
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Clark, Ruaridh A.; Smith, Keith; Escudero, Javier; Ibañez, Agustin Mariano; Parra, Mario A.; Robust Assessment of EEG Connectivity Patterns in Mild Cognitive Impairment and Alzheimer's Disease; Frontiers Media; Frontiers in Neuroimaging; 1; 7-2022; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES