Mostrar el registro sencillo del ítem

dc.contributor.author
Gomez, Adrian Guillermo  
dc.contributor.author
Páez Ponce, Jose  
dc.contributor.author
Grosse, M.  
dc.contributor.author
Soria, Sergio Raul  
dc.contributor.author
Condo, Adriana Maria  
dc.contributor.author
Flores, Alejandra  
dc.contributor.author
Schulz, Michael  
dc.contributor.author
Vizcaino, Pablo  
dc.contributor.author
Santisteban, Javier Roberto  
dc.date.available
2023-12-12T14:33:15Z  
dc.date.issued
2023-12  
dc.identifier.citation
Gomez, Adrian Guillermo; Páez Ponce, Jose; Grosse, M.; Soria, Sergio Raul; Condo, Adriana Maria; et al.; Evaluation of the delayed hydrogen cracking behavior and the hydrogen diffusion coefficient for different microstructures of the Zr-2.5%Nb alloy; Elsevier Science; Journal of Nuclear Materials; 587; 12-2023; 1-13  
dc.identifier.issn
0022-3115  
dc.identifier.uri
http://hdl.handle.net/11336/220004  
dc.description.abstract
The susceptibility of delayed hydride cracking (DHC) in the Zr-2.5%Nb alloy was evaluated in six microstructures produced from an extruded tube of Zr-2.5%Nb, which underwent different thermomechanical treatments, divided into two separate groups: Low temperature samples (LT) were heat-treated below the monotectoid temperature in the α-Zr + β-Nb field, and included pressure tube sample of CANDU-type material obtained through two different cold deformation methods, rolling and drawing, and stress-relieved at 400 °C for 24 h, and heat-treated samples at 600 °C/4 h. High-temperature samples (HT) were heat-treated in the β-Zr field at 900 °C/3 h, and two different cooling sequences up to room temperature. The increase in the ultimate tensile strength (UTS) and hardness due to metallurgical processing in LT materials made them more susceptible to DHC, reducing the stress intensity, KIH, from 11.8 to 8.5 MPa m0.5, together with an increase in crack propagation velocity from 1.6 10−8 to 4.5 10−8 m/s. In situ hydrogen diffusion experiments were performed at ANTARES, the cold neutron imaging facility at the FRM-2 reactor, on LT materials. These experiments demonstrated that the recrystallization treatment-induced discontinuity of the β-Zr phase in the parent material has a significant impact on hydrogen diffusion. It results in a 35% reduction in the diffusion coefficient compared to the parent material and a decrease in the terminal solid solubility (TSS) was observed. This resulted in a slight increase in KIH (7%), an increase in the hydride incubation time, and a decrease of about 20% in the crack propagation velocity. Under identical testing conditions, HT specimens were not susceptible to DHC phenomenon.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DELAYED HYDRIDE CRACKING  
dc.subject
HYDROGEN DIFFUSION  
dc.subject
PRESSURE TUBES  
dc.subject
ZR ALLOYS  
dc.subject.classification
Otras Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Evaluation of the delayed hydrogen cracking behavior and the hydrogen diffusion coefficient for different microstructures of the Zr-2.5%Nb alloy  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-11T17:47:22Z  
dc.journal.volume
587  
dc.journal.pagination
1-13  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Gomez, Adrian Guillermo. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia Ciclo del Combustible Nuclear. Laboratorio de Materia de la Fábrica de Aleaciones Especiales; Argentina  
dc.description.fil
Fil: Páez Ponce, Jose. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia Ciclo del Combustible Nuclear. Laboratorio de Materia de la Fábrica de Aleaciones Especiales; Argentina  
dc.description.fil
Fil: Grosse, M.. Karlsruher Institut Für Technology.; Alemania  
dc.description.fil
Fil: Soria, Sergio Raul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina  
dc.description.fil
Fil: Condo, Adriana Maria. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Flores, Alejandra. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia Ciclo del Combustible Nuclear. Laboratorio de Materia de la Fábrica de Aleaciones Especiales; Argentina  
dc.description.fil
Fil: Schulz, Michael. Karlsruher Institut Für Technology.; Alemania  
dc.description.fil
Fil: Vizcaino, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia Ciclo del Combustible Nuclear. Laboratorio de Materia de la Fábrica de Aleaciones Especiales; Argentina  
dc.description.fil
Fil: Santisteban, Javier Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia Ciclo del Combustible Nuclear. Laboratorio de Materia de la Fábrica de Aleaciones Especiales; Argentina  
dc.journal.title
Journal of Nuclear Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022311523004920  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jnucmat.2023.154725