Mostrar el registro sencillo del ítem
dc.contributor.author
Aguirre, Nicolas
dc.contributor.author
Cymberknop, Leandro Javier
dc.contributor.author
Grall Maës, Edith
dc.contributor.author
Ipar, Eugenia
dc.contributor.author
Armentano, Ricardo Luis
dc.date.available
2023-12-12T12:01:30Z
dc.date.issued
2023-02
dc.identifier.citation
Aguirre, Nicolas; Cymberknop, Leandro Javier; Grall Maës, Edith; Ipar, Eugenia; Armentano, Ricardo Luis; Central Arterial Dynamic Evaluation from Peripheral Blood Pressure Waveforms Using CycleGAN: An In Silico Approach; Molecular Diversity Preservation International; Sensors; 23; 3; 2-2023; 1-13
dc.identifier.issn
1424-8220
dc.identifier.uri
http://hdl.handle.net/11336/219907
dc.description.abstract
Arterial stiffness is a major condition related to many cardiovascular diseases. Traditional approaches in the assessment of arterial stiffness supported by machine learning techniques are limited to the pulse wave velocity (PWV) estimation based on pressure signals from the peripheral arteries. Nevertheless, arterial stiffness can be assessed based on the pressure–strain relationship by analyzing its hysteresis loop. In this work, the capacity of deep learning models based on generative adversarial networks (GANs) to transfer pressure signals from the peripheral arterial region to pressure and area signals located in the central arterial region is explored. The studied signals are from a public and validated virtual database. Compared to other works in which the assessment of arterial stiffness was performed via PWV, in the present work the pressure–strain hysteresis loop is reconstructed and evaluated in terms of classical machine learning metrics and clinical parameters. Least-square GAN (LSGAN) and Wasserstein GAN with gradient penalty (WGAN-GP) adversarial losses are compared, yielding better results with LSGAN. LSGAN mean ± standard deviation of error for pressure and area pulse waveforms are 0.8 ± 0.4 mmHg and 0.1 ± 0.1 cm2, respectively. Regarding the pressure–strain elastic modulus, it is achieved a mean absolute percentage error of 6.5 ± 5.1%. GAN-based deep learning models can recover the pressure–strain loop of central arteries while observing pressure signals from peripheral arteries.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Molecular Diversity Preservation International
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
ARTERIAL PRESSURE WAVEFORM
dc.subject
ARTERIAL STIFFNESS
dc.subject
DEEP LEARNING
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Central Arterial Dynamic Evaluation from Peripheral Blood Pressure Waveforms Using CycleGAN: An In Silico Approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-12-07T17:52:18Z
dc.journal.volume
23
dc.journal.number
3
dc.journal.pagination
1-13
dc.journal.pais
Suiza
dc.description.fil
Fil: Aguirre, Nicolas. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Cymberknop, Leandro Javier. Universidad Tecnológica Nacional; Argentina
dc.description.fil
Fil: Grall Maës, Edith. Université de Technologie de Troyes; Francia
dc.description.fil
Fil: Ipar, Eugenia. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional; Argentina
dc.journal.title
Sensors
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/s23031559
Archivos asociados