Mostrar el registro sencillo del ítem

dc.contributor.author
Aguirre, Nicolas  
dc.contributor.author
Cymberknop, Leandro Javier  
dc.contributor.author
Grall Maës, Edith  
dc.contributor.author
Ipar, Eugenia  
dc.contributor.author
Armentano, Ricardo Luis  
dc.date.available
2023-12-12T12:01:30Z  
dc.date.issued
2023-02  
dc.identifier.citation
Aguirre, Nicolas; Cymberknop, Leandro Javier; Grall Maës, Edith; Ipar, Eugenia; Armentano, Ricardo Luis; Central Arterial Dynamic Evaluation from Peripheral Blood Pressure Waveforms Using CycleGAN: An In Silico Approach; Molecular Diversity Preservation International; Sensors; 23; 3; 2-2023; 1-13  
dc.identifier.issn
1424-8220  
dc.identifier.uri
http://hdl.handle.net/11336/219907  
dc.description.abstract
Arterial stiffness is a major condition related to many cardiovascular diseases. Traditional approaches in the assessment of arterial stiffness supported by machine learning techniques are limited to the pulse wave velocity (PWV) estimation based on pressure signals from the peripheral arteries. Nevertheless, arterial stiffness can be assessed based on the pressure–strain relationship by analyzing its hysteresis loop. In this work, the capacity of deep learning models based on generative adversarial networks (GANs) to transfer pressure signals from the peripheral arterial region to pressure and area signals located in the central arterial region is explored. The studied signals are from a public and validated virtual database. Compared to other works in which the assessment of arterial stiffness was performed via PWV, in the present work the pressure–strain hysteresis loop is reconstructed and evaluated in terms of classical machine learning metrics and clinical parameters. Least-square GAN (LSGAN) and Wasserstein GAN with gradient penalty (WGAN-GP) adversarial losses are compared, yielding better results with LSGAN. LSGAN mean ± standard deviation of error for pressure and area pulse waveforms are 0.8 ± 0.4 mmHg and 0.1 ± 0.1 cm2, respectively. Regarding the pressure–strain elastic modulus, it is achieved a mean absolute percentage error of 6.5 ± 5.1%. GAN-based deep learning models can recover the pressure–strain loop of central arteries while observing pressure signals from peripheral arteries.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Molecular Diversity Preservation International  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
ARTERIAL PRESSURE WAVEFORM  
dc.subject
ARTERIAL STIFFNESS  
dc.subject
DEEP LEARNING  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Central Arterial Dynamic Evaluation from Peripheral Blood Pressure Waveforms Using CycleGAN: An In Silico Approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-07T17:52:18Z  
dc.journal.volume
23  
dc.journal.number
3  
dc.journal.pagination
1-13  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Aguirre, Nicolas. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Cymberknop, Leandro Javier. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Grall Maës, Edith. Université de Technologie de Troyes; Francia  
dc.description.fil
Fil: Ipar, Eugenia. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Armentano, Ricardo Luis. Universidad Tecnológica Nacional; Argentina  
dc.journal.title
Sensors  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/s23031559